• Title/Summary/Keyword: Stress Wave Propagation

Search Result 195, Processing Time 0.023 seconds

Stochastic elastic wave analysis of angled beams

  • Bai, Changqing;Ma, Hualin;Shim, Victor P.W.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.767-785
    • /
    • 2015
  • The stochastic finite element method is employed to obtain a stochastic dynamic model of angled beams subjected to impact loads when uncertain material properties are described by random fields. Using the perturbation technique in conjunction with a precise time integration method, a random analysis approach is developed for efficient analysis of random elastic waves. Formulas for the mean, variance and covariance of displacement, strain and stress are introduced. Statistics of displacement and stress waves is analyzed and effects of bend angle and material stochasticity on wave propagation are studied. It is found that the elastic wave correlation in the angled section is the most significant. The mean, variance and covariance of the stress wave amplitude decrease with an increase in bend angle. The standard deviation of the beam material density plays an important role in longitudinal displacement wave covariance.

A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects

  • Ebrahimi, Farzad;Haghi, Parisa
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.373-393
    • /
    • 2018
  • This paper is concerned with the wave propagation behavior of rotating functionally graded temperature-dependent nanoscale beams subjected to thermal loading based on nonlocal strain gradient stress field. Uniform, linear and nonlinear temperature distributions across the thickness are investigated. Thermo-elastic properties of FG beam change gradually according to the Mori-Tanaka distribution model in the spatial coordinate. The nanobeam is modeled via a higher-order shear deformable refined beam theory which has a trigonometric shear stress function. The governing equations are derived by Hamilton's principle as a function of axial force due to centrifugal stiffening and displacement. By applying an analytical solution and solving an eigenvalue problem, the dispersion relations of rotating FG nanobeam are obtained. Numerical results illustrate that various parameters including temperature change, angular velocity, nonlocality parameter, wave number and gradient index have significant effect on the wave dispersion characteristics of the understudy nanobeam. The outcome of this study can provide beneficial information for the next generation researches and exact design of nano-machines including nanoscale molecular bearings and nanogears, etc.

Dynamic Stress Intensity Factors of the Half Infinite Crack in the Orthotropic Material Strip with a Large Anisotropic Ratio (이방성비가 큰 직교이방성체의 반 무한 균열에 대한 동적 응력확대계수에 관한 연구)

  • Baek, Un-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1557-1564
    • /
    • 2000
  • When the half infinite crack in the orthotropic material strip with a large anisotropic ratio(E11>>E22) propagates with constant velocity, dynamic stress component $\sigma$y occurre d along the $\chi$ axis is derived by using the Fourier transformation and Wiener-Hopf technique, and the dynamic stress intensity factor is derived. The dynamic stress intensity factor depends on a crack velocity, mechanical properties and specimen hight. The normalized dynamic stress intensity factors approach the maximum values when normalized time(=Cs/a) is about 2. They have the constant values when the normalized time is greater than or equal to about 2, and decrease with increasing a/h(h: specimen hight, a: crack length) and the normalized crack propagation velocity( = c/Cs, Cs: shear wave velocity, c: crack propagation velocity).

Stress evaluation of tubular structures using torsional guided wave mixing

  • Ching-Tai, Ng;Carman, Yeung;Tingyuan, Yin;Liujie, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.639-648
    • /
    • 2022
  • This study aims at numerically and experimentally investigating torsional guided wave mixing with weak material nonlinearity under acoustoelastic effect in tubular structures. The acoustoelastic effect on single central frequency guided wave propagation in structures has been well-established. However, the acoustoelastic on guided wave mixing has not been fully explored. This study employs a three-dimensional (3D) finite element (FE) model to simulate the effect of stress on guided wave mixing in tubular structures. The nonlinear strain energy function and theory of incremental deformation are implemented in the 3D FE model to simulate the guided wave mixing with weak material nonlinearity under acoustoelastic effect. Experiments are carried out to measure the nonlinear features, such as combinational harmonics and second harmonics in related to different levels of applied stresses. The experimental results are compared with the 3D FE simulation. The results show that the generation combinational harmonic at sum frequency provides valuable stress information for tubular structures, and also useful for damage diagnosis. The findings of this study provide physical insights into the effect of applied stresses on the combinational harmonic generation due to wave mixing. The results are important for applying the guided wave mixing for in-situ monitoring of structures, which are subjected to different levels of loadings under operational condition.

Numerical Analysis of Stress Field around Crack Tip under Impact Load (충격하중에 의해 크랙 주위에 형성되는 응력장에 관한 수치해석적 연구)

  • Hwang, Gap-Woon;Cho, Kyu-Zong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.450-460
    • /
    • 1996
  • To investigate the effect of stress wave propagation for crack tip, impact responses of two-dimensional plates with oblique cracks are investigated by a numerical method. In the numerical analysis, the finite element method is used in space domain discretization and the Newmark constant acceleration algorithm is used in time integration. According to the numerical results from the impact response analysis. it is found that the stress fields are bisected at the crack surface and the parts of stress intensity are moved along the crack face. The crack tip stress fields are yaried rapidly. The magnitude of crack tip stress fields are converted to dynamic stress intensity factor. Dynamic sress intensity factor appears when the stress wave has reached at the crack tip and the aspect of change of dynamic stress intensity factor is shown to be the same as the part of the flow of stress intensity.

Effect of Interface Hole Shape on Dynamic Interface Crack Propagation (계면에 존재하는 구멍의 모양이 동적 계면균열전파에 미치는 영향)

  • Yin, Hai-Long;Lee, Ouk-Sub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1217-1222
    • /
    • 2002
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of the interface crack. This paper investigates the effects of the hole (existed along the path of the crack propagation) shape on the dynamic interface crack propagation behavior by comparing the experimental isochromatic fringes to the theoretical stress fields.

Propagation behavior of the interface crack through a hole (구멍을 통과하는 계면균열의 전파거동)

  • Lee, O.S.;Yin, H.L.;Hwang, S.W.;Byun, K.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.127-131
    • /
    • 2000
  • The dynamic photoelasticity with the aid of Cranz-Shardin type high speed camera system is utilized to record the dynamically propagating behavior of an interface crack. This paper investigates determined the effects of the hole (existed on the path of the crack propagation) on the crack propagation behavior by comparing the experiment isochromatic fringes to the theoretical stress fields.

  • PDF

The Evaluation of GFRP Pipe by NDT Methods (비파괴시험에 의한 GFRP Pipe의 평가)

  • Lee, J.S.;Cho, K.S.;Chang, H.K.;Lee, S.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 1989
  • It is desirable to develop the effective NDT techniques to evaluate the strength of composite structures. In this study several of acoustic NDT techniques were applied to investigate useful parameters for evaluating the filament wound GFRP structures and following results were obtained. 1. Propagation velocity of stress wave to axial direction in the filament wound GFRP pipe depends on the effective modulus along the propagation direction and source location was parcticable from the a measured velocities. 2. By the application of acoustic emission techniques to GFRP pipe during hydraulic test, it was proven to be possible to detect the damage initiating pressure which could be evaluated nondestructively through the measuring of stress wave energy factor(SWEF). 3. The final failure pressure of GFRP was greatly influenced in the presence of pass through defects, and void-like defects were more dangerous than the laminar type defects.

  • PDF

Shear waves propagation in an initially stressed piezoelectric layer imperfectly bonded over a micropolar elastic half space

  • Kumar, Rajneesh;Singh, Kulwinder;Pathania, D.S.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.121-129
    • /
    • 2019
  • The present study investigates the propagation of shear waves in a composite structure comprised of imperfectly bonded piezoelectric layer with a micropolar half space. Piezoelectric layer is considered to be initially stressed. Micropolar theory of elasticity has been employed which is most suitable to explain the size effects on small length scale. The general dispersion equations for the existence of waves in the coupled structure are obtained analytically in the closed form. Some particular cases have been discussed and in one particular case the dispersion relation is in well agreement to the classical-Love wave equation. The effects of various parameters viz. initial stress, interfacial imperfection and micropolarity on the phase velocity are obtained for electrically open and mechanically free system. Numerical computations are carried out and results are depicted graphically to illustrate the utility of the problem. The phase velocity of the shear waves is found to be influenced by initial stress, interface imperfection and the presence of micropolarity in the elastic half space. The theoretical results obtained are useful for the design of high performance surface acoustic devices.

Effect of rotation on Stoneley waves in orthotropic magneto-thermoelastic media

  • Parveen, Lata;Himanshi, Himanshi
    • Wind and Structures
    • /
    • v.35 no.6
    • /
    • pp.395-403
    • /
    • 2022
  • The present research is concerned with the study of Stoneley wave propagation at the interface of two dissimilar homogeneous orthotropic magneto-thermoelastic solids with fractional order theory of type GN-III with three phase-lags and combined effect of hall current and rotation. With the help of appropriate boundary conditions the secular equations of Stoneley waves are obtained in the form of determinant. The characteristics of wave such as phase velocity, attenuation coefficient and specific loss are computed numerically. The effect of rotation on the Stoneley wave's phase velocity, attenuation coefficient, specific loss, displacement components, stress components and temperature change has been depicted graphically. Some particular cases are also derived in this problem.