• Title/Summary/Keyword: Stress Wave Propagation

Search Result 194, Processing Time 0.023 seconds

Edge wave propagation in an Electro-Magneto-Thermoelastic homogeneous plate subjected to stress

  • Kakar, Rajneesh;Kakar, Shikha
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1201-1214
    • /
    • 2015
  • This paper introduces the combined effect of electric field, magnetic field and thermal field on edge wave propagating in a homogeneous isotropic prestressed plate of finite thickness and infinite length. The dispersion relation of edge wave has been obtained by using classical dynamical theory of thermoelasticity. The phase velocity has been computed and shown graphically for various initial stress parameter, electro-magneto parameter, electric parameter and thermoelastic coupling parameter.

Assessment of Incipient Decay of Radiata Pine Wood Using Stress-wave Technique in the Transverse Direction (횡단방향(橫斷方向) 응력파(應力波) 방법(方法)에 의(依)한 라디에타소나무의 초기부후(初期腐朽) 평가(評價))

  • Kim, Gyu-Hyeok;Jee, Woo-Guen;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.18-27
    • /
    • 1996
  • The feasibility of using stress-wave technique in the transverse direction for the assessment of early stages of decay was investigated using compression test specimens having different annual ring orientations subjected to decay by Tyromyces palustris for various time intervals. Decay detection, quantitative assessment of decay, and the prediction of residual strength of decayed wood with less than five percent weight loss can be feasible using stress-wave parameters (wave velocity, wave impedance, and stress-wave elasticity) and their percent reduction due to decay, measured by stress-wave technique in the transverse direction. The use of stress-wave technique in the transverse direction for the application of this technique to structural members in service is desirable, when considering the easiness of attachment of accelerometers of stress-wave measuring device on the surface of members and also accurate detection of localized decayed areas. In stress-wave technique in the transverse direction, stress-wave parameters measured were different according to the angles between wave propagation path and annual ring, due to the anisotropy of wood structure. Therefore, it is recommended to use percent reduction in stress-wave parameters instead of stress-wave parameters. This evaluation method using percent reduction in stress-wave parameters is ideal when it is impossible to observe annual ring orientation on the transverse surface of wood.

  • PDF

Theoretical analysis of transient wave propagation in the band gap of phononic system

  • Lin, Yi-Hsien;Ma, Chien-Ching
    • Interaction and multiscale mechanics
    • /
    • v.6 no.1
    • /
    • pp.15-29
    • /
    • 2013
  • Phononic system composed of periodical elastic structures exhibit band gap phenomenon, and all elastic wave cannot propagate within the band gap. In this article, we consider one-dimensional binary materials which are periodically arranged as a 20-layered medium instead of infinite layered system for phononic system. The layered medium with finite dimension is subjected to a uniformly distributed sinusoidal loading at the upper surface, and the bottom surface is assumed to be traction free. The transient wave propagation in the 20-layered medium is analyzed by Laplace transform technique. The analytical solutions are presented in the transform domain and the numerical Laplace inversion (Durbin's formula) is performed to obtain the transient response in time domain. The numerical results show that when a sinusoidal loading with a specific frequency within band gap is applied, stress response will be significantly decayed if the receiver is away from the source. However, when a sinusoidal force with frequency is out of band gap, the attenuation of the stress response is not obvious as that in the band gap.

Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer

  • Lata, Parveen;Singh, Sukhveer
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.141-150
    • /
    • 2021
  • In the present paper we have investigated the Stoneley wave propagation at the interface of two dissimilar homogeneous nonlocal magneto-thermoelastic media under the effect of hall current applied to multi-dual-phase lag heat transfer. The secular equations of Stoneley waves have been derived by using appropriate boundary conditions. The wave characteristics such as attenuation coefficients, temperature distribution and phase velocity are computed and have been depicted graphically. Effect of nonlocal parameter and hall effect are studied on the attenuation coefficient, phase velocity, temperature distribution change, stress component and displacement component. Also, some particular cases have been discussed from the present study.

Stress Wave Reduction of Structures Using MR Inserts (MR Insert를 이용한 구조물의 응력파 저감)

  • 강병우;김재환;최승복;김경수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.71-77
    • /
    • 2001
  • In this paper, stress wave propagation characteristics of MR(Magneto-rheological) inserts are experimentally investigated. Generally, stress waves of structures such as warships or submarines are induced by shock waves from underwater explosion. Their fatal effects on the shipboard equipments or structures damage the performance of warships. But, such a problem can be solved by controlling the stress waves propagating through structures by means of MR inserts. MR insert consists of two aluminum layers and MR fluid filled in between. Two piezoceramic disks are embedded on the host plate as a transmitter and a receiver of stress waves. Pulse waves are generated by the transmitter and they reach to the receiver through the MR insert. Permanent magnet and magnetic coil are used to produce magnetic field at the MR insert. In the presence of magnetic field, MR particles are arranged in chains parallel to the magnetic field such that the transmitted stress waves are reduced. Attenuation of stress waves is experimentally investigated.

  • PDF

″A Study on the Stress and Wave Propagation in Transversely Impacted Composite Laminates″

  • Ahn, Kook-Chan;Kim, Nam-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.39-45
    • /
    • 1992
  • The impulsive stress and wave propagation of a glass/epoxy laminate subjected to the transverse low-velocity impact of a steel ball are investigated theoretically and experimentally. A plate finite element model based on Whitney and Pagano's theory In consunchon with experimental contact laws is used for the theoretical investigation. The specimens fo, statical indentation and impact test we composed of [0/45/0/-45/0]$_{2s}$ and [90/45/90/-45/90]$_{2s}$ stacking sequences and have clamped-simply supported boundary conditions. Finally, these two results are compared and then the impulsive stress and wave propagation characteristics of this laminated composite are studied.ied.

  • PDF

Approaches of the Computaional Mechanics on the Stress Wave Analysis (응력파동해석에 대한 전산역학적 접근방법)

  • 조윤호;정현규;김승호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.415-429
    • /
    • 2002
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi-mode conversion of guided wave scattering problems.

  • PDF

Detection of tube defect using the autoregressive algorithm

  • Halim, Zakiah A.;Jamaludin, Nordin;Junaidi, Syarif;Yusainee, Syed
    • Steel and Composite Structures
    • /
    • v.19 no.1
    • /
    • pp.131-152
    • /
    • 2015
  • Easy detection and evaluation of defect in the tube structure is a continuous problem and remains a significant demand in tube inspection technologies. This study is aimed to automate defect detection using the pattern recognition approach based on the classification of high frequency stress wave signals. The stress wave signals from vibrational impact excitation on several tube conditions were captured to identify the defect in ASTM A179 seamless steel tubes. The variation in stress wave propagation was captured by a high frequency sensor. Stress wave signals from four tubes with artificial defects of different depths and one reference tube were classified using the autoregressive (AR) algorithm. The results were demonstrated using a dendrogram. The preliminary research revealed the natural arrangement of stress wave signals were grouped into two clusters. The stress wave signals from the healthy tube were grouped together in one cluster and the signals from the defective tubes were classified in another cluster. This approach was effective in separating different stress wave signals and allowed quicker and easier defect identification and interpretation in steel tubes.

Characteristics of Shear Wave Velocity as Stress-Induced and Inherent Anisoptopies (응력유도 및 고유 이방성에 따른 전단파 속도 특성)

  • Lee, Chang-Ho;Lee, Jong-Sub;Cho, Tae-Hyeon;Lee, Jeong-Hark;Kim, Sang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.137-146
    • /
    • 2006
  • Shear wave velocity of uncemented soil can be expressed as the function of effective stresses when capillary phenomenons are negligible. However, the terms of effective stresses are divided to the direction of wave propagation and polarization because stress states are generally anisotropy. The shear wave velocities are affected by parameters and exponents that are experimentally determined. The exponents are controlled contact effects of particulate materials(sizes, shapes, and structures of particles) and the parameters are changed contact behaviors between particles, material properties of particles, and type of packing(i.e., void ratio and coordination number). In this study, consolidation tests are performed by using clay, mica and sand specimens. Shear wave velocities are measured during consolidation tests to investigate the stress-induced and inherent anisotropies through bender elements. Results show the shear wave velocities depends on the stress-induced anisotropy for round particles. Furthermore the shear wave velocity is dependent on particle alignment under the constant effective stress. This study suggests that the shear wave velocity and the shear modulus should be carefully calculated and used for the design and construction of geotechnical structures.

  • PDF

Influence of water content on dynamic mechanical properties of coal

  • Gu, Helong;Tao, Ming;Wang, Jingxiao;Jiang, Haibo;Li, Qiyue;Wang, Wen
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.85-95
    • /
    • 2018
  • Water affects the mechanical properties of coal and stress wave propagation. To comprehensively investigate the effect of water content on the properties of coal, laboratory tests including X-Ray Diffraction (XRD) analysis, P-wave test, S-wave test, static and dynamic compression test with different water contents were conducted. The compressive strength, elastic modulus and failure strain and their mechanism of coal specimen under coupled static-dynamic load with the increased water content were observed. Meanwhile, energy transmission and dissipation characteristics of a stress wave in coal specimens with different water contents under dynamic load and its relation with the failure features, such as fragmentation and fractal dimension, of coal was analyzed. Furthermore, the dynamic interpretation of water infusion to prevent coal burst based on water infusion model of coal seam roadway was provided.