• Title/Summary/Keyword: Stress Wave Interaction

Search Result 51, Processing Time 0.022 seconds

Dynamic Fracture Analysis of Structural Element due to Stress Wave Propagation (응력파에 의한 구조부재의 동적파괴 해석)

  • 김경수;박준범;정배훈
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.195-203
    • /
    • 1997
  • The interaction between cracks and stress wave due to impact and explosive loads is numerically calculated in the study. The interaction and the effects of stress wave are numerically examined with the application of Bicharacteristic Method. This method has been used with confidence for its reliability in reproducing the realistic and physical wave pattern in the complete solution domain. The dynamic stress intensity factor, K/sub I/(t) for cracks under impact loads are numerically simulated and its results are compared favorably with Kalthoff's experimental output. Also the influence of stress wave to the dynamic stress intensity factor for the case of two symmetric holes around cracks are investigated. The results of study are also compared favorably with the experiment and proven to be applied to the structures exposed to impact and explosive loads.

  • PDF

A Study on the Numerical Models of Wave induced Currents (파랑에 의한 연안류의 수치모델에 관한 연구)

  • Lee, Jung-Maan;Kim, Jae-Joong;Park, Jung-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.75-85
    • /
    • 1998
  • A finite difference model for predicting time-dependent, wave-induced nearshore current is studied. The model includes wave refraction, wave-current interaction, bottom friction and wind effect. This model iteratively solved the linear the linear set of conservation of both mass and momentum, which were time averaged (over one wave period) and depth integrated, for mean velocities and free surface displacement. Numerical simulations of nearshore current under oblique wave attack, and for wave and wind induced current on a longshore periodic beach are carried out. Longshore velocities tend to zero in some distances outside the breaker line. And the peak velocity is shifted shoreward at the breaker line. The results represent the general characteristics of the nearshore current induced by wave.

  • PDF

Analysis of Interaction of Jet-like Current and Wave using Numerical Simulation (수치모의를 통한 유사제트-파랑의 상호작용 해석)

  • Choi, Jun-Woo;Bae, Jae-Seok;Roh, Min;Yoon, Sun-Bum
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.675-678
    • /
    • 2008
  • The effect of wave and current interactions on jet-like current flowing against waves was investigated based on numerical simulations. The numerical simulations are conducted by a combined model system of REF/DIF(a wave model) plus SHORECIRC(a current model) and a Boussinesq equation model, FUNWAVE. In the simulations, regular and irregular waves refracted due to the jet-like opposing current were focused along the core region of current, and the jet-like current was earlier spreaded when the waves had larger wave heights. The numerical results show that the rapid change of wave height distribution in transverse direction near current inlet plays a significant role to spread the jet-like current. In other words, the gradients of radiation stress forcing in transverse direction have a more significant effect on the jet-like current than its relatively small gradients forcing in flowing direction, which tend to accelerate the current, do. In conclusion, it is indispensible to take into account the interaction effect of wave transformation and current characteristics when waves meet the opposing jet-like current such as river mouth.

  • PDF

3-D Dynamic Response Characteristics of Seabed around Composite Breakwater in Relation to Wave-Structure-Soil Interaction (파랑-구조물-지반 상호작용에 의한 혼성제 주변 해저지반의 3차원 동적응답 특성)

  • Hur, Dong-Soo;Park, Jong-Ryul;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.505-519
    • /
    • 2016
  • If the seabed is exposed to high waves for a long period, the pore water pressure may be excessive, making the seabed subject to liquefaction. As the water pressure change due to wave action is transmitted to the pore water pressure of the seabed, a phase difference will occur because of the fluid resistance from water permeability. Thus, the effective stress of the seabed will be decreased. If a composite breakwater or other structure with large wave reflection is installed over the seabed, a partial standing wave field is formed, and thus larger wave loading is directly transmitted to the seabed, which considerably influences its stability. To analyze the 3-D dynamic response characteristics of the seabed around a composite breakwater, this study performed a numerical simulation by applying LES-WASS-3D to directly analyze the wave-structure-soil interaction. First, the waveform around the composite breakwater and the pore water pressure in the seabed and rubble mound were compared and verified using the results of existing experiments. In addition, the characteristics of the wave field were analyzed around the composite breakwater, where there was an opening under different incident wave conditions. To analyze the effect of the changed wave field on the 3-D dynamic response of the seabed, the correlation between the wave height distribution and pore water pressure distribution of the seabed was investigated. Finally, the numerical results for the perpendicular phase difference of the pore water pressure were aggregated to understand the characteristics of the 3-D dynamic response of the seabed around the composite breakwater in relation to the water-structure-soil interaction.

Theoretical analysis of transient wave propagation in the band gap of phononic system

  • Lin, Yi-Hsien;Ma, Chien-Ching
    • Interaction and multiscale mechanics
    • /
    • v.6 no.1
    • /
    • pp.15-29
    • /
    • 2013
  • Phononic system composed of periodical elastic structures exhibit band gap phenomenon, and all elastic wave cannot propagate within the band gap. In this article, we consider one-dimensional binary materials which are periodically arranged as a 20-layered medium instead of infinite layered system for phononic system. The layered medium with finite dimension is subjected to a uniformly distributed sinusoidal loading at the upper surface, and the bottom surface is assumed to be traction free. The transient wave propagation in the 20-layered medium is analyzed by Laplace transform technique. The analytical solutions are presented in the transform domain and the numerical Laplace inversion (Durbin's formula) is performed to obtain the transient response in time domain. The numerical results show that when a sinusoidal loading with a specific frequency within band gap is applied, stress response will be significantly decayed if the receiver is away from the source. However, when a sinusoidal force with frequency is out of band gap, the attenuation of the stress response is not obvious as that in the band gap.

A Numerical Study of Shock Wave/Boundary Layer Interaction in a Supersonic Compressor Cascade

  • Song, Dong-Joo;Hwang, Hyun-Chul;Kim, Young-In
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.366-373
    • /
    • 2001
  • A numerical analysis of shock wave/boundary layer interaction in transonic/supersonic axial flow compressor cascade has been performed by using a characteristics upwind Navier-Stokes method with various turbulence models. Two equation turbulence models were applied to transonic/supersonic flows over a NACA 0012 airfoil. The results are superion to those from an algebraic turbulence model. High order TVD schemes predicted shock wave/boundary layer interactions reasonably well. However, the prediction of SWBLI depends more on turbulence models than high order schemes. In a supersonic axial flow cascade at M=1.59 and exit/inlet static pressure ratio of 2.21, k-$\omega$ and Shear Stress Transport (SST) models were numerically stables. However, the k-$\omega$ model predicted thicker shock waves in the flow passage. Losses due to shock/shock and shock/boundary layer interactions in transonic/supersonic compressor flowfields can be higher losses than viscous losses due to flow separation and viscous dissipation.

  • PDF

The Effects of Parenting Beliefs and Supportive Interaction on Mothers' Parenting Stress of Young Children: Variations by Income Level and Employment Status (가구소득과 취업여부에 따른 영아기 어머니의 양육신념과 지지적 상호작용이 양육스트레스에 미치는 영향)

  • Ok, Kyung Hee;Kim, Mee Hae
    • Korean Journal of Childcare and Education
    • /
    • v.11 no.1
    • /
    • pp.461-480
    • /
    • 2015
  • The purpose of this study was to examine the effects of mothers' parenting beliefs and supportive interaction on maternal parenting stress. It also examined variations of the results by household income levels and mothers' employment status. Participants of the study were 770 mothers of children aged 23-31 months who were a part of the 2010 wave of the National Survey for Panel Study on Korean Children. The analyses revealed that parenting stress was affected by mothers' parenting beliefs and supportive interaction. Mothers' supportive interaction has been shown significantly to predict parenting stress in all four groups of this study. The results demonstrated that the strength of the relationship between parenting stress and parenting beliefs and reciprocal interaction varied based on the combination of income and work status. These findings suggested that income and employment status are important to examine collectively.

Parenting Stress among Dual- and Single-Earner Families : The Interaction Effect of Marital Relationship and Father's Child-Rearing Involvement on the Parenting Stress (맞벌이 가구와 남성홀벌이 가구 부모의 양육스트레스 연구 : 부부관계와 아버지 양육참여의 상호작용 효과 분석)

  • Kim, Yuna;Park, Aely
    • Journal of Family Relations
    • /
    • v.21 no.1
    • /
    • pp.51-76
    • /
    • 2016
  • Objectives: This study aims to investigate the effect of marital relationship on parenting stress among dual- and single-earner families. In particular, this study focuses on the interaction effect of marital relationship and father's child-rearing involvement on the parenting stress. To access factors associated with parenting stress, we included marital satisfaction and marital conflict as the dimensions of marital relationship in this study. Method: We employed data from the 5th wave of the Panel Study of Korean Children(PSKC) data. Our analysis sample consisted of 1,515 parents having at least one child aged under 4 years. Also, this study conducted descriptive statistics and multiple regression analysis. Results: First of all, marital satisfaction and marital conflict were significantly related to parenting stress for both mother and father in dual-earner families. While both indicators were significantly related to parenting stress for father, marital conflict only was a significant predictor for mother in single-earner families. Second, father involvement was a significant predictor for parenting stress for father in both dual- and single-earner families. Third, interaction effects were found between father involvement and marital conflict in the dual-earner families and between father involvement and marital satisfaction in the single-earner families. Conclusions: Based on the results, we recommended programs designed to enhance father's child-rearing involvement such as parenting education and community-based campaign. In addition, we recommended that policy and practice need to identify marital relationship dynamics to promote father's involvement and to reduce marital conflict in both dual- and single-earner families accordingly.

Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug;Kwon, Chang-Oh;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.153-166
    • /
    • 2004
  • This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.

Numerical analysis of an offshore platform with large partial porous cylindrical members due to wave forces

  • Park, Min-Su;Kawano, Kenji;Nagata, Shuichi
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.337-353
    • /
    • 2011
  • In the present study, an offshore platform having large partial porous cylindrical members, which are composed of permeable and impermeable cylinders, is suggested. In order to calculate the wave force on large partial porous cylindrical members, the fluid domain is divided into three regions: a single exterior region, N inner regions and N beneath regions, and the scattering wave in each fluid region is expressed by an Eigen-function expansion method. Applying Darcy's law to the porous boundary condition, the effect of porosity is simplified. Wave excitation forces and wave run up on the structures are presented for various wave conditions. For the idealized three-dimensional platform having large partial porous cylindrical members, the dynamic response evaluations of the platform due to wave forces are carried out through the modal analysis. In order to examine the effects of soil-structure interaction, the substructure method is also applied. The displacement and bending stress at the selective nodal points of the structure are computed using various input parameters, such as the shear-wave velocity of soil, the wave height and the wave period. Applying the Monte Carlo Simulation (MCS) method, the reliability evaluations at critical structure members, which contained uncertainties caused by dynamic forces and structural properties, are examined by the reliability index with the results obtained from MCS.