• 제목/요약/키워드: Stress State Monitoring

검색결과 67건 처리시간 0.021초

Application of Nonlinear Ultrasonic Method for Monitoring of Stress State in Concrete

  • Kim, Gyu Jin;Park, Sun Jong;Kwak, Hyo Gyoung
    • 비파괴검사학회지
    • /
    • 제36권2호
    • /
    • pp.121-129
    • /
    • 2016
  • As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

Developments in Hull Strength Monitoring (Developments in Hull Strength Monitoring)

  • P. A. Thomson;Ph. D BMT SeaTech Ltd.
    • 해양환경안전학회지
    • /
    • 제2권1호
    • /
    • pp.143-143
    • /
    • 1996
  • Recent Class requirements and IMO recommendations concerning Hull Strength Monitoring (HSM) have prompted an increasing number of shipowner to adopt monitoring systems on bulk carriers and tanker. Such systems are designed to give warning when stress levels and the frequency and magnitude of ship motions approach levels which require corrective action. When fitted these systems provide enhanced operational safety and efficiency. This paper describes a development beyond the standard BMT HSM system through the integration of stress, motion and radar-based sea state monitoring with powerful, on-board, artificial intelligence (AI) tools. The latter utilises conceptual clustering techniques as an aid to pattern recognition in stress, fatigue. motion and sea state data clusters. This, in turn, provides additional operational guidance for ship's staff. Feedback from applications of the standard BMT HSM and extended HSM systems on board the British Steel Bulk Shipping fleet is described.

Effect of spatial characteristics of a weak zone on tunnel deformation behavior

  • Yoo, Chungsik
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.41-58
    • /
    • 2016
  • This paper focuses on the deformation behavior of tunnels crossing a weak zone in conventional tunneling. A three-dimensional finite element model was adopted that allows realistic modeling of the tunnel excavation and the support installation. Using the 3D FE model, a parametric study was conducted on a number of tunneling cases with emphasis on the spatial characteristics of the weak zone such as the strike and dip angle, and on the initial stress state. The results of the analyses were thoroughly examined so that the three-dimensional tunnel displacements at the tunnel crown and the sidewalls can be related to the spatial characteristic of the weak zone as well as the initial stress state. The results indicate that the effectiveness of the absolute displacement monitoring data as early warning indicators depends strongly on the spatial characteristics of the weak zone. It is also shown that proper interpretation of the absolute monitoring data can provide not only early warning for a weak zone outside the excavation area but also information on the orientation and the extent of the weak zone. Practical implications of the findings are discussed.

Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks

  • Li, Yuebing;Jin, Ting;Wang, Zihang;Wang, Dasheng
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2638-2651
    • /
    • 2020
  • Nozzle corner cracks present at the intersection of reactor pressure vessels (RPVs) and inlet or outlet nozzles have been a persistent problem for a number of years. The fracture analysis of such nozzle corner cracks is very important and critical for the efficient design and assessment of the structural integrity of RPVs. This paper aims to perform an engineering critical assessment of RPVs with nozzle corner cracks subjected to several transients accompanied by pressurized thermal shocks. The critical crack size of the RPV model with nozzle corner cracks under transient loading is evaluated on failure assessment curve. In particular, the influence of cladding on the crack initiation of nozzle corner crack under thermal transients is studied. The influence of primary internal pressure and secondary thermal stress on the stress field at nozzle corner and SIF at crack front is analyzed. Finally, the influence of different crack size and crack shape on the final critical crack size is analyzed.

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

광섬유 브래그 격자 센서를 이용한 복합재료 구조물의 건전성 감시 기법 개발에 관한 연구 (A study on structural health monitoring of composite structures by using embedded fiber Bragg grating sensors)

  • 김원석;이정주
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.107-110
    • /
    • 2004
  • In this paper, a new structural health monitoring technique for composite laminates through the use of embedded fiber Bragg grating (FBG) sensors is presented. The method traces the ply stress states of a laminate and compares them with failure criteria during the service time of structures. The ply stress state of every ply composing the composite laminate can be obtained using classical lamination theory by embedded FBG sensors in the laminate. Graphite/epoxy laminate specimens, embedded with three FBG sensors, were fabricated. Tension tests were performed to evaluate the ply stress states tracing technique. Experimental results show that laminates experience fracture when the ply stress states are over the boundaries of failure criteria. In this method, critical damage can be detected by the ply stress states which are close to the boundaries of the failure criteria.

  • PDF

Investigation lateral deformation and failure characteristics of strip coal pillar in deep mining

  • Chen, Shaojie;Qu, Xiao;Yin, Dawei;Liu, Xingquan;Ma, Hongfa;Wang, Huaiyuan
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.421-428
    • /
    • 2018
  • In deep mining, the lateral deformation of strip coal pillar appears to be a new characteristic. In order to study the lateral deformation of coal-mass, a monitoring method and monitoring instrument were designed to investigate the lateral deformation of strip coal pillar in Tangkou Coalmine with the mining depth of over 1000 m. Because of without influence of repeated mining, the bedding sandstone roof is easy to break and the angle between maximum horizontal stress and the roadway is small, the maximum lateral deformation is only about 287 mm lower than the other pillars in the same coalmine. In deep mining, the energy accumulation and release cause a discontinuous damage in the heterogeneous coal-mass, and the lateral deformation of coal pillar shows discontinuity, step and mutation characters. These coal-masses not only show a higher plasticity but also the high brittleness at the same time, and its burst tendency is more obvious. According to the monitoring results and theoretical calculations, the yield zone of the coal pillar width is determined as 15.6 m. The monitoring results presented through this study are of great significance to the stability analysis and design of coal pillar.

최근 소개된 손목형 심박수 측정 장치의 유용성에 관한 연구 (Study on the Validity of Recently Introduced Wrist Watch Type Heart Rate Monitoring Device)

  • 유승훈
    • 대한소아치과학회지
    • /
    • 제41권1호
    • /
    • pp.27-33
    • /
    • 2014
  • 소아 환자가 치과 진료실에서 느끼는 불안감과 공포에 의해 발생하는 스트레스를 측정하기 위한 다양한 방법이 있다. 치료받은 환아나 보호자를 통한 설문을 이용하는 방법과 생체 반응을 측정하는 방법이 가장 많이 사용되고 있다. 스트레스와 관련한 심박수를 측정하는 방법으로 가장 많이 사용하는 것은 포화도 측정기가 있으나 움직이는 소아에게는 적절하지 못한 문제가 있다. 이러한 단점을 극복하기 위해 최근 개발되어 소개된 손목형 심박수 측정 장치(Alpha, MIO, USA)를 포화도 측정기(MP110, MECKIS, Republic of Korea)와 비교하였으며 이를 위해 10명의 성인을 대상으로 안정시와 운동 직후의 심박수를 두 기기를 동시에 장착하여 측정된 데이터를 Wilcoxon Singed Rank test를 시행하였다(p < 0.05). 두 기기에서 측정된 데이터 간의 유의한 차이가 없었다(p < 0.05).

Structural health monitoring using piezoceramic transducers as strain gauges and acoustic emission sensors simultaneously

  • Huo, Linsheng;Li, Xu;Chen, Dongdong;Li, Hongnan
    • Computers and Concrete
    • /
    • 제20권5호
    • /
    • pp.595-603
    • /
    • 2017
  • Piezoceramic transducers have been widely used in the health monitoring of civil structures. However, in most cases, they are used as sensors either to measure strain or receive stress waves. This paper proposes a method of using piezoelectric transducers as strain gauges and acoustic emission (AE) sensors simultaneously. The signals received by piezoceramic transducers are decomposed into different frequency components for various analysis purposes. The low-frequency signals are used to measure strain, whereas the high-frequency signals are used as acoustic emission signal associated with local damage. The b-value theory is used to process the AE signal in piezoceramic transducers. The proposed method was applied in the bending failure experiments of two reinforced concrete beams to verify its feasibility. The results showed that the extracted low-frequency signals from the piezoceramic transducers had good agreement with that from the strain gauge, and the processed high-frequency signal from piezoceramic transducers as AE could indicate the local damage to concrete. The experimental results verified the feasibly of structural health monitoring using piezoceramic transducers as strain gauges and AE sensors simultaneously, which can advance their application in civil engineering.

An experimental procedure for evaluating the consolidation state of marine clay deposits using shear wave velocity

  • Chang, Ilhan;Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Smart Structures and Systems
    • /
    • 제7권4호
    • /
    • pp.289-302
    • /
    • 2011
  • In marine clay deposits, naturally formed or artificially reclaimed, the evaluation and monitoring of the consolidation process has been a critical issue in civil engineering practices due to the time frame required for completing the consolidation process, which range from several days to several years. While complementing the conventional iconographic method suggested by Casagrande and recently developed in-situ techniques that measure the shear wave, this study suggests an alternative experimental procedure that can be used to evaluate the consolidation state of marine clay deposits using the shear wave velocity. A laboratory consolidation testing apparatus was implemented with bimorph-type piezoelectric bender elements to determine the effective stress-shear wave velocity (${\sigma}^{\prime}-V_s$) relationship with the marine clays of interest. The in-situ consolidation state was then evaluated by comparing the in-situ shear wave velocity data with the effective stress-shear wave velocity relationships obtained from laboratory experiments. The suggested methodology was applied and verified at three different sites in South Korea, i.e., a foreshore site in Incheon, a submarine deposit in Busan, and an estuary delta deposit in Busan. It is found that the shear wave-based experimental procedure presented in this paper can be effectively and reliably used to evaluate the consolidation state of marine clay deposits.