• Title/Summary/Keyword: Stress Shape Function

Search Result 265, Processing Time 0.026 seconds

Stress intensity factor and stress distribution near crack tip for infinite body containing regid inclusion with crack shape (균열형상의 강체함유물을 포함하는 무한체에 대한 균열선단 부근의 응력분포와 응력세기계수)

  • Lee, Kang-Young;Kim, Jong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.680-683
    • /
    • 1998
  • In case of the infinite body containing a rigid inclusion with line crack shape, stress intensity factor is determined and the relation between stress intensity factor and stress distribution near a crack tip is developed. Also, the relation between stress intensity factor and Kolosoff stress function is developed. Finally, these results are compared with those that the crack surface is under no traction.

A Study on the Shape Optimization of Metal Ring Obturator under the High Pressure (고압을 받는 금속 밀폐링의 형상 최적화에 관한 연구)

  • Lee, Young-Shin;Chae, Je-Wook;Park, Tae-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.315-320
    • /
    • 2000
  • The optimal design for the shape of metal ring obturator under the high pressure using parameter study on the stress analysis considering effects of design variable is presented and is compared to experimental results. The design variables are such as thickness, taper, radius of shape of the obturation ring. For optimization of the obturation ring, the weight is maximized subject to maximum stress of the obturator within allowable stress. The design constraints are geometric elements of design variables. The trends of parametric study are in good agreement with the experimental results.

  • PDF

A local point interpolation method for stress analysis of two-dimensional solids

  • Liu, G.R.;Gu, Y.T.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.221-236
    • /
    • 2001
  • A local point interpolation method (LPIM) is presented for the stress analysis of two-dimensional solids. A local weak form is developed using the weighted residual method locally in two-dimensional solids. The polynomial interpolation, which is based only on a group of arbitrarily distributed nodes, is used to obtain shape functions. The LPIM equations are derived, based on the local weak form and point interpolation. Since the shape functions possess the Kronecker delta function property, the essential boundary condition can be implemented with ease as in the conventional finite element method (FEM). The presented LPIM method is a truly meshless method, as it does not need any element or mesh for both field interpolation and background integration. The implementation procedure is as simple as strong form formulation methods. The LPIM has been coded in FORTRAN. The validity and efficiency of the present LPIM formulation are demonstrated through example problems. It is found that the present LPIM is very easy to implement, and very robust for obtaining displacements and stresses of desired accuracy in solids.

An Accelerated Life Test for Burnout of Tungsten Filament of Incandescent Lamp (텅스텐 백열전구의 필라멘트 단선에 대한 가속수명시험)

  • 이재국;김진우;신재철;김명수
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.129-137
    • /
    • 2004
  • This paper presents an accelerated life test for burnout of tungsten filament of incandescent lamp. From failure analyses of field samples, it is shown that their root causes are local heating or hot sports in the filament caused by tungsten evaporation and wire sag. Finite element analysis is performed to evaluate the effect of vibration and impact for burnout, but any points of stress concentration or structural weakness are not found in the sample. To estimate the burnout life of lamp, an accelerated life test is planned by using quality function deployment and fractional factorial design, where voltage, vibration, and temperature are selected as accelerating variables. We assumed that Weibull lifetime distribution and a generalized linear model of life-stress relationship hold through goodness of fit test and test for common shape parameter of the distribution. Using accelerated life testing software, we estimated the common shape parameter of Weibull distribution, life-stress relationship, and accelerating factor.

  • PDF

A Study on the Stress Concentration Coefficient due to the Change of Position and Shape of Ellipse on a Square Plate (사각 평판에서 타원의 위치와 형상 변화에 따른 응력집중계수의 변화에 관한 연구)

  • 최경호;권영석;박기훈;김현수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.833-836
    • /
    • 2002
  • Sometimes open holes are required for the function and the weight reduction of structure and machinery. However, the serious stress concentration occurs because of the geometric discontinuity caused by the holes and cutting section. In this study, it is attempted to obtain the stress concentration coefficients of the inner surface of the hole boundary by changing the position and the shape of holes on the homogeneous isotropic plate. And the effects on the plate are investigated. The results show that the stress level becomes low and the distribution area widens the position of stress concentration changes as the ratio ah increases and change to a circle. And as the ratio a/l decreases, the stress concentration reduces.

  • PDF

Shape Optimization of a Rotating Cantilever Beam Considering Its Modal and Stress Characteristics (회전 외팔보의 진동 및 응력 특성을 고려한 형상 최적화)

  • Yun, Yeong-Hun;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.645-653
    • /
    • 2001
  • It is well known that natural frequencies increase when a cantilever beam rotates about the axis perpendicular to its longitudinal axis. Such phenomena that are caused by centrifugal inertia forces are often referred to as the stiffening effects. Occasionally it is necessary to control the variation of a natural frequency or the maximum stress of a rotating beam. By changing the thickness of the rotating beam, the modal or the stress characteristics can be changed. The thickness of the rotating beam is assumed to be a cubic spline function in the present work. An optimization method is employed to find the optimal thickness shape of the rotating beam. This method can be utilized for the design of rotating structures such as turbine blades and aircraft rotary wings.

A Study of a New Anisoparametric In-Plane Deformable Curved Beam Element (새로운 부등매개변수 면내변형 곡선보 요소에 관한 연구)

  • Yoo, Jae-Hyeong;Yoo, Seung-Won;Moon, Won-Joo;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.405-410
    • /
    • 2000
  • Generally, it is known that the reduced integration, modified shape function anisoparametric and non-conforming element can minimize the error induced by stiffness locking phenomenon in the finite element analysis. In this study, new anisoparametric curved beam elements are introduced by using different shape functions in each displacement field. When these shape functions are substitute for functional, we can expect that the undulate stress patterns are not appeared or minimized because there is no unmatched coefficient in the constrained energy equation. As a result of numerical test, the undulate stress patterns are disappeared, and displacement and stress are coincide with the exact solutions.

  • PDF

Betterment of The Tractor Frame Design Applying Computation Mechanics Approach

  • Koike, Masayuki
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1212-1221
    • /
    • 1993
  • The shape optimization procedure applying finite element method was carried out for the specific purpose of analysis of a tractor chassis frame. Minimization of the mass as an objective function is executed under multiple constrained conditions of nodal displacements and stresses. The optimization process executions were succeeded in converging into single optimum solution. Although mass reduction and stress alleviation were attained by 40% and 26 to 24% respectively , the geometry of the shape is so complicated for fabrication that the refinement of the geometry is of necessity.

  • PDF

Finite Element Stress Analysis of the Implant Fixture According to the Thread Configuration and the Loading Condition (임플란트 고정체의 나사산 형태와 하중조건에 따른 응력분석)

  • Ahn, Ouk-Ju;Jeong, Jai-Ok;Kim, Chang-Hyun;Kang, Dong Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.153-167
    • /
    • 2005
  • The purpose of this study was to compare the v-shape thread with the square shape thread of fixture in the view of stress distribution pattern using finite element stress analysis. The finite element model was designed with the parallel placement of two standard fixtures(4.0 mm diameter ${\times}$ 11.5 mm length) on the region of mandibular 1st and 2nd molars. Three dimensional finite element model was created with the components of the implant and surrounding bone. This study simulated loads of 200 N at the central fossa in a axial direction (load A), 200 N at the buccal offset load that is 2 mm apart from central fossa in a axial direction (load B), 200 N at the buccal offset load that was 4 mm apart from central fossa in a axial direction (load C). These forces of load A',B',C' were applied to a $15^{\circ}$ inward oblique direction at that same site with 200 N. Von Mises stress values were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study : 1. The highest stress concentration occurred at the cervical region of the implant fixture. 2. Von Mises stress value of off-site region was higher than that of central fossa region. 3. Square shape thread type showed more even stress distribution in the vertical and oblique force than V-shape thread type. 4. Stress distribution was the most effective in the case of buccal offset load (2, 4 mm distance from central fossa) in the square shape thread type. 5. V-shape thread type revealed higher von Mises stress value than square shape thread type in all environmental condition. The results from numerical analyses concluded that square shape thread type had the lower destructive stress and more stress distribution between the fixture and bone interface than V-shape thread type. Therefore, square shape thread type was regarded as optimal thread configuration in biomechanical concepts.

A study on the stress distribution and plastic area propagation in the beams with a circular hole (원형공을 가진 보의 응력분포와 소성역 전파거동에 관한 연구)

  • 김희철;왕지석;이경호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.225-239
    • /
    • 1985
  • The beams with a circular hole are often used for constructing structures. The center of the circular hole is normally located in neutral axis and the stress state around the hole due to bending moment is trivial. But the stress level around the hole due to shear force is expected to be significant especially in the case of beams made of shape steels. In this paper, the stress distributions around the circular hole of beams were presented. Using polar coordinates and generallized stress function, the formulas of stress components were derived. The aspects of plastic area propagations based on von Mises yield criteria were also shown graphically. In order to verify the formulas presented in this paper, a beam of I-shape steel with a circular hole was made and the strains around the hole were measured under various loading conditions. The experimental results were proved to coincide fairly well with the calculated values.

  • PDF