• Title/Summary/Keyword: Stress Raio

Search Result 3, Processing Time 0.018 seconds

Effect of PWHT and stress ratio on fatigue behavior of welded joints in steel (강용접부의 피로거동에 미치는 용접후열처리 및 응력비의 영향)

  • 김경수;임재규;정세희
    • Journal of Welding and Joining
    • /
    • v.5 no.3
    • /
    • pp.53-61
    • /
    • 1987
  • Post weld heat treatment(PWHT) is usually carried out to remove the residual stress and to improve the microstructure and mechanical properties of welded joints. By the way, welding structure transformed owing to PWHT and reheating for repair loads the random cycles fatigue as offshore welding structure of constant low cycle fatigue as pressure vessel, and then, pre-existing flaws or cracks exist in a structural component and those cracks grow under cyclic loading. Therefore, the effects of PWHT and stress ratio on fatigue crack growth behaviors were studied on the three regions such as HAZ, sub-critical HAZ and deposit metal of welded joints in SM53 steel. Fatigue crack growth behavior of as-weld depended on microstructure and fatigue crack growth rate of HAZ was the lowest at eac region, but after PWHT it was somewhat higher than that of as-wel. In case of applying the stress($10kg/mm^2$) during PWHT, fatigue crack growth resistance tended to increase in the overall range of .DELTA.K.

  • PDF

Simulation of Bi-dispersed Electrorheological Fluids of Different Particle Sizes by the Extended Maxwell-Wagner Polarization Model (확장된 Maxwell-Wagner 분극 모델에 의한 서로 크기가 다른 입자들로 구성된 이성분계 전기유변 유체의 전산 모사)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.613-619
    • /
    • 2022
  • The extended Maxwell-Wagner polarization model is employed to describe the ER(Electrorheological) behavior of bi-dispersed ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. Under the same particle volume fraction, it is found that the dynamic yield stresses of uniform size suspensions do not depend on the particle size. Compared with uniform size suspensions, the dynamic yield stress is reduced for ER fluids consisting of two kinds of particles with different sizes. Compared with the dynamic yield stress behavior, for ${\dot{\gamma}}^*$≧0.01 the shear stress shows different behaviors depending on the particle sizes and the raio of different size particles. The simulation results show the nonlinear ER behavior (∆𝛕 ∝ En, n ≈ 1.55) of the conducting particle ER suspensions.

Study on the Analysis of Turbulent Flow in a Rotating Square Sectioned $90^{\circ}$ Curved Duct (회전하는 정사각단면 $90^{\circ}$곡관내 난류유동에 관한 수치해석적 연구)

  • 이건휘;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2206-2222
    • /
    • 1995
  • In this study, the characteristics of the three-dimensional turbulence flow in a rotating square sectioned 90.deg. bend were investigated by numerical simulation. And a dimensionless number, Coriolis force ratio, primarily subjected to the feature of the flow in the rotating 90.deg. bend was obtained as a result of one-dimensional theory. In the simulation study, low Reynolds number ASM developed by Kim(1991) in the square sectioned 180.deg. bend flow was modified in order to consider the rotational effects in the testing flows. In the near wall region of low Reynolds number, four turbulence models were employed and compared in order to find the most appropriate model for the analysis of the rotating 90.deg. bend flow. By comparison of the results with the experimental data, it is shown that low Reynolds number Algebraic Stress Model with rotating terms reflects most correctly the rotational effects. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotation affect directly both the mean motion and the turbulent fluctuations. Their actions on the mean flow are to induce a secondary motion while their effects on turbulence are to modify the pressure strain.