• Title/Summary/Keyword: Stress Intensity Factor Range (${\Delta}K$)

Search Result 109, Processing Time 0.023 seconds

A Study on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature. (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.147-153
    • /
    • 2000
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Omega\textrm{K}$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Omega\textrm{K}$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

The Effect of Fiber Stacking Angle on the Relationship Between Fatigue Crack and Delamination Behavior in a Hybrid Composite Materials (하이브리드 복합재료의 섬유배향각이 피로균열 및 층간분리 거동의 관계에 미치는 영향)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.281-288
    • /
    • 2004
  • The hybrid composite material (Al/GFRP laminates) are applied to the fuselage and wing in a aircraft. Therefore, Al/GFRP laminates suffer from the cyclic bending moments. This study was to evaluate the effect of fiber stacking angle on the fatigue crack propagation and delamination behavior using the relationship between crack growth rate (da/dN) and stress intensity factor range (ΔK) in Al/GFRP laminates under cyclic bending moment. The variable delamination growth behavior in case of three different type of fiber orientations, i.e., [Al/O$_2$/Al], [Al/+45$_2$/Al] and [Al/90$_2$/Al] at the interface of Al layer and glass fiber layer was measured by ultrasonic C-scan images. As results of this study, It represent that the delamination shape should turns out to have more effective characteristics on the fiber stacking angle. The extension of the delamination zone in case of [Al/+45$_2$/Al] and [Al/90$_2$/Al] were not formed along the fatigue crack profile. The shape of delamination zone depend on fiber stacking angle and the variable type with the delamination contour decreased non-linearly toward the crack tip at the Al layer.

A Study on The Effect of Compressive Residual Stress on fatigue Crack Propagation Behavior of Spying Steel (스프링강의 피로크랙 진전거동에 미치는 압축잔류응력의 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.200-207
    • /
    • 2003
  • In this paper, the effect of the compressive residual stresses which were obtained under the various shot velocities of shot balls on the fatigue behaviors of a spring steel, were investigated. The examination of CT specimen test were executed with the materials(JISG SUP9) which are being commonly used for the springs of automotive vehicles. As a result, the optimal shot velocity of shot balls were acquired considering the peak values of the compressive residual stresses on the surface of specimen and effect on the speed of the fatigue crack propagation da/dN in stage II and the threshold stress intensity factor range Δ$K_{th}$ in stage I. Also the material constant C and the crack propagation index m in the formula of paris law da/dN= C $({\Delta}K^m)$ were suggested in this work to estimate the dependency on the shot velocity.

An Analysis of Crack Growth Rate Due to Variation of Fatigue Crack Growth Resistance (피로균열전파저항의 변동성에 의한 균열전파율의 해석)

  • Kim, Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1139-1146
    • /
    • 1999
  • Reliability analysis of structures based on fracture mechanics requires knowledge on statistical characteristics of the parameter C and m in the fatigue crack growth law, $da/dN=C({\Delta}K)^m$. The purpose of the present study is to investigate if it is possible to predict fatigue crack growth rate by only the fluctuation of the parameter C. In this study, Paris-Erdogan law is adopted, where the author treat the parameter C as random and m as constant. The fluctuation of crack growth rate is assumed only due to the parameter C. The growth resistance coefficient of material to fatigue crack growth (Z=1/C) was treated as a spatial stochastic process, which varies randomly on the crack path. The theoretical crack growth rates at various stress intensity factor range are discussed. Constant ${\Delta}K$ fatigue crack growth tests were performed on the structural steel, SM45C. The experimental data were analyzed to determine the autocorrelation function and Weibull distributions of the fatigue crack growth resistance. And also, the effect of the parameter m of Paris' law due to variation of fatigue crack growth resistance was discussed.

Fatigue Crack Propagation Behavior of Steel Plate of Laser Welded Tailored Blank (테일러드 블랭크 레이저 용접 강판의 피로균열 전파 거동)

  • Han, Moon-Sik;Lee, Yang-Sub
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.120-126
    • /
    • 2006
  • In this paper, we investigated the characteristics of fatigue fracture on TB(Tailored Blank) weldment by comparing the fatigue crack propagation characteristics of base metal with those of TB welded sheet used for vehicle body panels. We also investigated the influence of center crack on the fatigue characteristic of laser weld sheet of same thickness. We conducted an experiment on fatigue crack propagation on the base metal specimen of 1.2mm thickness of cold-rolled metal sheet(SPCSD) and 2.0mm thickness of hot-rolled metal sheet(SAPH440) and 1.2+2.0mm TB specimen. We also made an experiment on fatigue crack propagation on 2.0+2.0mm and 1.2+1.2mm thickness TB specimen which had center crack. The characteristics of fatigue crack growth on the base metal were different from those on 1.2+2.0mm thickness TB specimen. The fatigue crack growth rate of the TB welded specimens is slower in low stress intensity factor range$({\Delta}K)$ region and faster in high ${\Delta}K$ region than that of the base metal specimens.

The Retardation Behaviors due to a Single Overload and High-Low Block Loads, and Retardation Model in 7075-T73 Aluminum Alloy (7075-T73 알루미늄 합금의 단일과대 및 고-저블럭하중에 의한 지연거동과 수명예측 모델)

  • 김정규;송달호;박병훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1605-1614
    • /
    • 1992
  • The effects of % overload (% O.L), baseline stress intensity factor range (.DELTA. $K_{b}$) and dimension-less crack depth (a/W) are examined for the retardation behaviors after a single overload and high-low block loads in 7075-T73 aluminum alloy. And wheeler model, which is one of the fatigue life prediction models, is modified to predict retardation life using these test results. The retardation cycles( $N_{d}$) increased with a decrease in a/W and an increase in % O.L. and (.DELTA. $K_{b}$) These effects are more severe after high-low block loads than single overload. In the case of single overload, the main mechanisms of the retardation are the crack closure and the relaxation of K due to crack branching. But in the case of high-low block loads, that of the main mechanism is the crack closure caused by the accumulated compressive residual stree at the crack tip, which is related with the contact of fracture surfaces. Test results were multiple regression analyzed and got regressed shaping correction factors, (n)$_{REG}$, as function of %O.L., a/W and (.DELTA. $K_{b}$) Wheeler model is modified by using these (n)$_{REG}$. The number of delay cycles calculated by modified Wheeler model were in good agreement with the test results of this study.y.udy.y.y.y.

The Characteristics of Fatigue Cracks Emanating from Micro Hole Defects Located Opposite Position of the Shaft Cross Section (축 단면 내 대칭 위치의 미소 원공 결함에서 발생한 피로균열 특징)

  • Song, Sam-Hong;Bae, Jun-Su;Ahn, Il-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.211-216
    • /
    • 2001
  • The components with the circular cross section have the symmetric combination parts for rotating balance and the crack emanates from the symmetric combination parts. The symmetric cracks from symmetric combination parts make a decrease in the component fatigue life more than single crack. In this study, to estimate the behavior of symmetric cracks, the fatigue test was performed using rotary bending tester on the specimen with a symmetric defects in circular cross section. The material used in this study is Ni-Cr-Mo steel alloy. Under the same stress, the result from the rotary bending fatigue test turned out that the symmetric cracks made a decrease in the fatigue life by 35% more than single crack and the relation between log a and cycle ratio $N/N_f$ obtained linearly.

  • PDF

A Study on the Corrosion Fatigue Crack Behavior of SPV 50 for Gas Storage Tanks in Marine Environment (해양환경 중에서 가스저장탱크용 SPV 50강재의 부식피로균열(腐蝕疲勞龜裂) 거동(擧動)에 관한 연구(硏究))

  • Lim, Uh-Joh;Shin, Jong-Dae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.198-208
    • /
    • 1997
  • Recently, with rapid increase of gas demand, there occurs much interest their security of safety in the gas storage tanks and pressure vessels etc. In order to solve the problems, the occurrence of corrosion fatigue crack and the propagation behavior must be investigated. Especially the occurrence of corrosion fatigue crack and the propagation behavior in the part which has concentrated stress or defects, must be studied more carefully. In this paper, the high-tensile steel of SPV 50 which is much used for building the LPG storage tanks was tested by the use of a plane bending corrosion fatigue tester under the various marine environment and in the air. These experiments were carried out to investigate the surface crack propagation behavior, the value of experimental constant for Paris' rule(da/dN=$C(K)^m$), the crack depth propagation rate and the accelerative factor of the surface crack propagation rate. The main results obtained are as follows ; 1) As the specific resistances of marine environment decreases, the exponential value of slope m of Paris' rule(da/dN=$C(K)^m$) decreases and the value of intercept C increases. 2) The surface crack propagation rate and the crack depth propagation rate are delayed, as the specific resistances of marine environment is increased. 3) The accelerative factor of the surface crack propagation rate by corrosion fatigue is higher, according as the stress intensity factor range ${\Delta}K_A$ is small.

  • PDF

Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 2: Fatigue Crack Propagation Behavior (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제2보: 피로균열진전 거동)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Seo, Hyun-Soo;Nam, Ki-Woo;Lee, Kun-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.79-84
    • /
    • 2009
  • Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. Therefore, the fracture mechanics approach needs to support the structural strength integrity for the used material. In this study, fatigue crack propagation behavior was investigated to super duplex stainless steel with 0.2% nitrogen. The various volume fraction and distribution of austenite structure for applied specimen in test were obtained by changing the heat treatment temperature and cycle. From test results, fatigue crack propagation rate showed two kinds of tendency between da/dN and ${\Delta}K$ according to distribution of austenite structure and structure anisotropy.

Probabilistic Evaluation of Fatigue Life in High Frequency Electric Resistance Welded Joint of the Pipe (고주파 전기저항용접부 강관에서의 피로수명의 확률론적 평가)

  • Seo, Young-Bum;Kim, Choong-Myeong;Kim, Chul-Su;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.400-405
    • /
    • 2004
  • In this study, the optimal welding condition of the input power was selected experimentally through the ERW simulator, which is equal to welding status of ERW part in pipe. This condition is the input power 250kW in the heat treatment of the $900^{\circ}C$ normalizing derived from the nondestructive technique and impact energy. In order to evaluate the variation of the fatigue life in the pipe, fatigue surface crack growth test of base and optimal welded metal were performed statistically. As stress intensity factor range (${\Delta}K_s$) increases, the fatigue crack propagation rate (da/aN) of the base metal is faster than that of the welded joint. The variation of the fatigue life in the ERW pipe was estimated statistically using Monte-Carlo simulation with the standard deviation of material constants (C and m) of the paris law in the specimen.

  • PDF