• Title/Summary/Keyword: Stress Intensity Factor Range (${\Delta}K$)

Search Result 109, Processing Time 0.028 seconds

A study of Fatigue Crack Growth Behavior and Crack Closure in 5083-O Aluminum Alloy (5083-0 알루미늄合金의 疲勞균열進展 擧動과 균열닫힘에 관한 硏究)

  • 박영조;김정규;김일현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.208-214
    • /
    • 1986
  • To establish the evaluation of the fatigue crack growth behavior in 5083-O aluminum alloy, constant load-amplitude fatigue crack growth tests were carried out under the small scale yielding conditions. Crack length and closure of this material were measured by the compliance method using a clip-on gage. The main results obtained as follows: The fatigue crack growth rate against stress intensity factor range .DELTA.K exhibits the trilinear form with two transitions at the growth rate 5.5*10$^{-6}$ and 5.5*10$^{-5}$ mm/cycle, in the so-caled Region II. The trilinear form appears still in the plot of growth rate versus effective stress intensity factor range .DELTA. $K_{eff}$. Stress ratio R affects the relationship of crack growth rates versus .DELTA.K but does not affect the reation of crack growth rate versus .DELTA. $K_{eff}$. The experimental results indicate that the effective stress intensity range ratio U depends on the maximum stress intensity factor $K_{max}$, but not on the stress ratio R.o R.R.

Fatigue crack growth and crack closure in 2017-T3 Aluminum alloy (2017 - T 3 알미늄 合金 의 勞龜裂進展 과 龜裂닫힘現象)

  • 송지호;김일현;신용승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.4 no.2
    • /
    • pp.47-53
    • /
    • 1980
  • Kikukawa-Compliance method using a conventional clip-on gauge was employed to investigate fatigue crack growth and crack closure in 2017-T3 aluminum alloy. The crack growth rate plot against stress intensity range .DELTA.K on a log-log diagram exhibits a bilinear form with a transition at the growth rate of 10$\^$-4/ mm/cycle. The bilinear form appears still in the plot of growth rate versus effective stress intensity range .DELTA.K$\_$eff/. Fatigue crack growth rate could be well represented by .DELTA.K$\_$eff. The experimental results indicate that the effective stress intensity range ratio U depends on the maximum stress intensity factor K$\_$max/, but the stress ratio R does not affect U. The crack opening stress intensity factor K$\_$op/ tends to increase with increasing K$\_$max/ and decrease with increasing .DELTA.K.

An Experimental on the Evalution of Fatigue Crack Propagation of Carbon Steel (탄소강의 피로균열 진전거동 평가에 관한 실험적 연구)

  • 김희송;안병욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.938-946
    • /
    • 1989
  • Using the CT specimen of carbon steel(SM45C), we estimated the fatigue crack propagation behavior in stable crack propagation range. Furthermore the fatigue crack propagation rate, Acoustic Emission(AE) count rate, and fractography characteristics were also compared among others. The following results were confirmed by experimental observation. Near-threshold stress intensity factor range(.DELTA. $K_{th}$) is influenced by stress ratio but not at the upper limit of stable crack propagation range. As stress intensity factor range(.DELTA.K) and(or) stress amplitude increase (s), both crack propagation rate(da/dN) and AE count rate(dn/dN) increase. Effective stress intensity factor range(.DELTA. $K_{off}$) determined from the crack closure point measurement by AE method is useful for the evaluation of fatigue crack propagation rate. Fractography in stable crack propagation range showed striation, and agreed with the crack propagation rate obtained either by experiment of by the results of microscopic measurements.s.

A study on the fatigue crack growth behavior of aluminum alloy weldments in welding residual stress fields (용접잔류응력장 중에서의 Aluminum-Alloy용접재료의 피로균열성장거동 연구)

  • 최용식;정영석
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.28-35
    • /
    • 1989
  • The fatigue crack growth behavior in GTA butt welded joints of Al-Alloy 5052-H38 was examined using Single Edge Notched(SEN) specimens. It is well known that welding residual stress has marked influence on fatigue crack growth rate in welded structure. In the general area of fatigue crack growth in the presence of residual stress, it is noted that the correction of stress intensity factor (K) to account for residual stress is important for the determination of both stress intensity factor range(.DELTA.K) and stress ratio(R) during a loading cycle. The crack growth rate(da/dN) in welded joints were correlated with the effective stress intensity factor range(.DELTA.Keff) which was estimated by superposition of the respective stress intensity factors for the residual stress field and for the applied stress. However, redistribution of residual stress occurs during crack growth and its effect is not negligible. In this study, fatigue crack growth characteristics of the welded joints were examined by using superposition of redistributed residual stress and discussed in comparison with the results of the initial welding residual stress superposition.

  • PDF

Fatigue Crack Growth Rate Equation by Crack Closure (균열닫힘현상을 고려한 피로균열전파식)

  • 김용수;강동명;신근하
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.81-87
    • /
    • 1991
  • We propose the crack growth rate equation which will model fatigue crack growth rate behavior such that constant stress amplitude fatigue crack growth behavior can be predicted. Constant stress amplitude fatigue tests are conducted for four materials under three stress ratios of R=0.2, R=0.4 and R=0.6. Materials which have different mechanical properties i.e. stainless steel, low carbon steel, medium carbon steel and aluminum alloy are used. Through constant stress amplitude fatigue test by using unloading elastic compliance method, it is confirmed that crack closure is a close relationship with fatigue crack propagation. We describe simply fatigue crack propagation behavior as a function of the effective stress intensity factor range ($\Delta$ $K_{eff}$=U .$\Delta$K) for all three regions (threshold region, stable region). The fatigue crack growth rate equation is given by da / dN=A($\Delta$ $K_{eff}$­$\Delta$ $K_{o}$ )$^{m}$ / ($\Delta$ $K_{eff}$­$\Delta$K) Where, A and m are material constants, and $\Delta$ $K_{o}$ is stress intensity factor range at low $\Delta$K region. $K_{cf}$ is critical fatigue stress intensity factor.actor.

  • PDF

A Study on the Effect of the Buliding Up by Welding on the Fatigue Fracture Behaviors for the Forged Steel (축계용 단조강재 보수 용접부의 피로 파괴 특성에 관한 연구)

  • 김영식;김종호;한명수;손병영
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.97-105
    • /
    • 1991
  • In this paper, the fatigue strength and the fatigue crack propagation behaviors of the round bar specimens which were spirally built up by welding and subsequently hardened by quenching were investigated. The material used was SF60 which was whdely employed in mechanical components, especially shafts. Fatigue tests were conducted at the fully reversed condition(R=-1) and axial and load control in the room temperature ahd air environment. The experimental results were expressed by both the range of stress intensity factor ($\Delta{K}$) and the effective range of stress intensity factor ($\Delta{K}_{eff}$). It was clarified that applying of quenching after the building up welding process improved the fatigue strength and the gatigue crack propagation property in the low range of $\Delta{K}$ of the built up round bar specimen.

  • PDF

The Effect of Fatigue Fracture in shot peening Marine structural steel at stress ratio (쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향)

  • Park, Kyoung-Dong;Han, Kun-Mo;Jin, Young-Beom
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.138-144
    • /
    • 2003
  • Rencentely, the request for the light weight is more incresed in the area of industrial environment and machinery and consistent effort is needed to accomplish high strength of material for the direction of light weight. we got the following characteristic from crack growth test carried out in the range of stress ration of 0.1, 0.3 and 0.6 by means of opening mode displacement. At the content stress ratio, the threshold stress intensity factor crack range ${\Delta}K_{th}$in the early stage of fatigue crack growth (Region I) and dtress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. Fatigue life shows more improvement in the Shot-peened material than in the Un-peening material. And compressive residual stress of surface on the Shot peening processed operate resistance force of fatigue. So we can obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is depend on Paris equation. (2) Although the maxium compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maxium compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

The Effect of Stress Ratio on the Surface Crack Growth Behavior in 7075-T651 Aluminum Alloy (7075-T651 Al合金의 表面균열進展에 미치는 應力比의 影響)

  • 박영조;김정규;신용승;김성민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.62-69
    • /
    • 1986
  • Fatigue surface crack growth was studied in 7075-T651 aluminum alloy plates subjected largely to bending loads. The surface crack length and its depth were measurement by the unloading elastic compliance method. The surface crack growth rate dc/dN, on the surface and da/dN, in the depth direction were obtained by the secant method. The stress intensity factor range .DELTA.K was computed by means of Newman and Raju equation. The aspect ratio a/c was presented in form of a/c=0.815-0.853(a/T). The effect of the stress ratio on the stable surface crack growth rates under increasing .DELTA.T is larger in lower .DELTA.K, while the relation between dc/dN, da/dN and the effective stress intensity factor range .DELTA.K$_{eff}$ is weakly dependent on the stress ratio.o.

Fatigue Crack Growth Equation considered the Effect of Stress Ratio (응력비의 영향을 고려한 표면피로균열의 균열성장식)

  • 강용구;김대석
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.39-49
    • /
    • 1998
  • In this work, fatigue tests by axial loading were carried out to investigate the effect of stress ratio on the growth behaviors of surface fatigue crack for SM45C steel and Al 2024-T4 alloy. The growth behaviors of surface crack have been monitored during fatigue process by measuring system attached CCTV and monitor. When the growth rates of surface crack were investigate by the concept of LEFM based on Newman-Raju's .DELTA.K, the dependence of stress ratio appears both SM45C steel and Al 2024-T4 alloy. Therefore, modified stress intensity factor range, .DELTA.K' [=(1+R)/sup n/.DELTA.K] are intorduced to eliminate the dependence of stress ratio. Using .DELTA.K', it is found that the dependence of stress ratio disappears both SM45C steel and Al 2024-T4 alloy.

  • PDF

The Development Methods of Fatigue Strength Improvement for the Marine Structural Steel (해양구조용강의 피로강도향상 공법개발)

  • Park, Keyoung-Dong;Jung, Jae-Wook
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.106-111
    • /
    • 2003
  • This study made an experiment On fatigue crack propagation da/dn, stress intensity factor range ${\Delta}K$ respectively in room temperature and in low temperature. And we got the following characteristics from fatigue crack growth test carried Out in the environment of room temperature and law temperature at $25^{\circ}C$, $-60^{\circ}C$, $-80^{\circ}C$, and $-100^{\circ}C$ in the range of stress ratio of 0.3 by means of opening made displacement. The threshold stress intensity factor range ${\Delta}Kth$ in the early stage of fatigue crack growth (Mode I) and stress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Made II) was decreased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at law temperature and high temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region.

  • PDF