• 제목/요약/키워드: Stress Intensity Factor Evaluation

검색결과 159건 처리시간 0.02초

세라믹/금속 접합재에 대한 정적강도의 파괴역학적 평가 (Evaluation of Static Strength Applying to Fracture Mechanics on Ceramic/Metal bonded Joint)

  • 김기성
    • 한국생산제조학회지
    • /
    • 제5권4호
    • /
    • pp.53-62
    • /
    • 1996
  • Recently, ceramic / metal bonded joints have led to inccreasing use of structural materials such as automobile, heat engine in various industries. In this paper, a method to analyze an interface crack under both residual stresses and applied loading was proposed. and some results of boundary element method(BEM) analysis Were presented, Fracture thoughness tests of ceramic/metals bonded joints with an interface crack Were carried out, and the stress intensity factors of these joints Ware analyzed by BEM. Also crack propagtion direction was simulated numerically by using BEM. Crack propagation angle was able to easily determine based on the maximum stress concept. The prediction of fracture strength by the fracture thoughness of the ceramics/metals bonded joints was proposed.

  • PDF

펄스-에코법을 이용한 접착접합 시험편의 정량적 비파괴 평가 (Quantitative Nondestructive Evaluation of Bonded Joints utilizing Pulse-Echo Ultrasonic Test)

  • 오승규;황영택;이원
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.157-164
    • /
    • 2003
  • The pulse-echo method is one of the most widely used ultrasonic techniques for application of nondestructive evaluation. Particularly, quantitative nondestructive evaluation of defects has been considered more important to assure the reliability and the safety of structure. Frequency energy in adhesive joints is based on the ultrasonic wave analysis. The attenuation coefficient upon wave amplitude and the frequency energy that is expressed in the term of wave pressure amplitude were utilized for the primary wave experiment. By means of a control experiment, it was confirmed that the variation of the frequency energy in adhesive joints depends on transition by stress variation. In this paper, the ultrasonic characteristics were measured for single lap joint and Double Cantilever Beam specimen with different fracture modes that was subjected to stress. Consequently, the data that was obtained from the adhesive specimen was analytically compared to the fracture mechanics parameter

복합응력장 하의 균열부재에 대한 잔류피로수명 평가방법 (Residual fatigue life evaluation method for the cracked components under complex stress fields)

  • 조창희;김상태;권재도
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.258-267
    • /
    • 1998
  • This study reviews the influence function method(IFM) for calculating stress intensity factors (SIFs, K) and modifies it to apply for the estimating the residual fatigue life for the cracked components under complex stress fields. An IFM has been developed to analyze SIFs for surface cracks which are subjectedto nonuniformly distributed stresses. Through elastic superposition, the influence function method properly accounts for redistribution of stress as the crack grows through the component. This influence function is unique to the given geometry and independent of the loading. Some examples have been provided to show the effectiveness of the IFM including the distributions of K in a residual stress field. The significant effect of residual stress upon fatigue crack growth in a welded component has been demonstrated with the IFM.

변형률 측정을 이용한 추진기관용 Al 합금의 파괴인성 평가 (Evaluation of Fracture Toughness of Al alloys for Propulsive Engine using Strain Measurement)

  • 김재훈;김덕회;임동규;박성욱;문순일
    • 한국안전학회지
    • /
    • 제17권3호
    • /
    • pp.13-21
    • /
    • 2002
  • The tincture toughness is evaluated by using U(compact tension) and 3PB(three point bending) specimens of AI alloys far propulsive engine. To evaluate the static fracture toughness, strain gage method is used. The static fracture toughness obtained from the strain measurement is compared with the results by ASTM standard and FEM analysis. For the reliable evaluation of fracture toughness, strain gages are attached at various positions.

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Su;Nho, In-Sik
    • 한국해양공학회지
    • /
    • 제17권2호
    • /
    • pp.34-39
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally condrcted by using S-N curves, as specified in the codeds and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02 ). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

Fatigue Life Evaluation of Butt-Welded Tubular Joints

  • Kim, Dong-Sup;Nho, In-Sik
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.69-74
    • /
    • 2003
  • Recent deepwater offshore structures in the Gulf of Mexico utilize butt welded tubular joints. Application of a welded tubular joint includes tendons, production risers, and steel catenary risers. Fatigue life assessment of these joints becomes more critical, as the structures to which they are attached are allowed to undergo cyclic and sometimes large displacements around an anchored position. Estimation of the fatigue behavior of these tubular members in the design stage is generally conducted by using S-N curves, as specified in the codes and standards. Applying the stress concentration factor of the welded structure to the S-N approach often results in a very conservative assessment, because the stress field acting on the tubular has a non-uniform distribution through the thickness. Fatigue life analysis using fracture mechanics has been applied in the design of the catenary risers. This technology enables the engineer to establish proper requirements on weld quality and inspection acceptance criteria to assure satisfactory structural integrity during its design life. It also provides guidance on proper design curves and a methodology for accounting for the effects of non-uniform stress distribution through the wall thickness. Still, there is inconsistency when designing tubular joints using a conventional S-N approach and when specifying weld flaw acceptance criteria using fracture mechanics approach. This study developed fatigue curves that are consistent with both the S-N approach and the fracture mechanics approach. Accounting for non-uniform stress distribution and threshold stress intensity factor were key parameters in relating both approaches. A series of S-N curves, generated from the fracture mechanics approach, were compared to the existing S-N curves. For flat plate butt joint, the S-N curve generated from fracture mechanics matches with the IIW class 100 curve when initial crack depth was 0.5 mm (0.02). The new curves for tubular joint agree very well with the experimental results. The comparison also indicated the degree of conservatism built into the API X design curve.

  • PDF

Crack growth analysis and remaining life prediction of dissimilar metal pipe weld joint with circumferential crack under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Vishnuvardhan, S.;Sudharshan, G.
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2949-2957
    • /
    • 2020
  • Fatigue crack growth model has been developed for dissimilar metal weld joints of a piping component under cyclic loading, where in the crack is located at the center of the weld in the circumferential direction. The fracture parameter, Stress Intensity Factor (SIF) has been computed by using principle of superposition as KH + KM. KH is evaluated by assuming that, the complete specimen is made of the material containing the notch location. In second stage, the stress field ahead of the crack tip, accounting for the strength mismatch, the applied load and geometry has been characterized to evaluate SIF (KM). For each incremental crack depth, stress field ahead of the crack tip has been quantified by using J-integral (elastic), mismatch ratio, plastic interaction factor and stress parallel to the crack surface. The associated constants for evaluation of KM have been computed by using the quantified stress field with respect to the distance from the crack tip. Net SIF (KH + KM) computed, has been used for the crack growth analysis and remaining life prediction by Paris crack growth model. To validate the model, SIF and remaining life has been predicted for a pipe made up of (i) SA312 Type 304LN austenitic stainless steel and SA508 Gr. 3 Cl. 1. Low alloy carbon steel (ii) welded SA312 Type 304LN austenitic stainless-steel pipe. From the studies, it is observed that the model could predict the remaining life of DMWJ piping components with a maximum difference of 15% compared to experimental observations.

냉간 압연강판 십자형 점용접부의 피로강도 평가 (Fatigue Strength Evaluation of SPCC Cross-Tension Spot Weld Joints)

  • 김호경;최덕호;양경탁
    • 한국안전학회지
    • /
    • 제21권5호
    • /
    • pp.17-21
    • /
    • 2006
  • In this study, SPCC cross-tension type specimens produced under various spot welding conditions were tensile and fatigue tested. Decrease of 2 kA in normal current condition of 10 kA caused a large amount of reduction in both static joining strength and fatigue life. And 2 kA increase resulted in increase of static joining strength and an increase in low cycle regime but a decrease in high cycle regime, revealing the fact that fatigue strength rather than static joining strength would be a major factor during design process in view of the body endurance. As a results of estimating the fatigue lifetimes of various types of spot weld specimens. equivalent stress intensity factor is the proper parameter for predicting the lifetimes of various types of specimens. which can be expressed as ${\Delta}K_{eq}(N/nm^{1.5})=11550N^{-0.36}_{f}$.

Fatigue Indicator Sensor의 형상에 따른 균열진전 특성의 비교 연구 (A Comparative Study on the Crack Propagation Characteristics According to the Pre-Notch Shapes of Fatigue Indicator Sensor)

  • 김재현;김슬기;조영근;여승훈;김경수;김성찬;이장현
    • 대한조선학회논문집
    • /
    • 제47권4호
    • /
    • pp.565-572
    • /
    • 2010
  • It is difficult to predict the accurate fatigue life of the ship structure because of load uncertainty and load redistribution at the ship structure members. As one of studies for accurate evaluation and prediction of fatigue life, it is a promising way to detect the crack previously by attaching the Fatigue Indicator Sensor (FIS) at the crack prediction region. In order to predict the fatigue life of the ship structure by using FIS, it is required to know previously the crack propagation characteristics according to pre-notch shapes. In this study, we obtained the stress distribution phase, stress concentration factors and stress intensity factor of various pre-notch shapes through FEA. Additionally, we conducted the fatigue test and obtained the characteristics of crack propagation according to the pre-notch shapes through comparison between the fatigue test and the FEA. Consequently, we classified the pre-notch shape into 3 categories: Long, Medium, and Short life type. On the basis of the numerical and experimental results, the FIS can be developed.

Effects of Material Modulus on Fracture Toughness of Human Enamel, a Natural Biocomposite

  • Mishra, Dhaneshwar;Yoo, Seung-Hyun
    • 비파괴검사학회지
    • /
    • 제31권3호
    • /
    • pp.287-293
    • /
    • 2011
  • The enamel, the upper layer of a tooth has remarkable capability of bearing severe loading on the tooth. The fracture behavior is important to understand the mechanism of load bearing and it could be very useful for developing new materials. Non-destructive evaluation of such materials will also benefit from this knowledge. The graded microstructures of enamel were modeled by finite element analysis software and the J-integrals and the stress intensity factors were evaluated as the fracture parameters. The results show that these parameters are location dependent. Those values increase when measured in the direction of dentine enamel junction. This finding matched well with experiments and implies many useful understanding of biomaterials and applications to new materials.