• Title/Summary/Keyword: Stress Gradient

Search Result 511, Processing Time 0.026 seconds

Analysis Method of X-Ray Diffraction Characteristic Values and Measured Strain for Steep Stress Gradient of Metal Material Surface Layer (금속재료 표면층의 급격한 응력구배에 대한 X-Ray회절 특성값과 측정된 변형률의 해석방법)

  • Chang-Suk Han;Chan-Woo Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.54-62
    • /
    • 2023
  • The most comprehensive and particularly reliable method for non-destructively measuring the residual stress of the surface layer of metals is the sin2ψ method. When X-rays were used the relationship of εφψ-sin2ψ measured on the surface layer of the processing metal did not show linearity when the sin2ψ method was used. In this case, since the effective penetration depth changes according to the changing direction of the incident X-ray, σφ becomes a sin2ψ function. Since σφ cannot be used as a constant, the relationship in εφψ-sin2ψ cannot be linear. Therefore, in this paper, the orthogonal function method according to Warren's diffraction theory and the basic profile of normal distribution were synthesized, and the X-ray diffraction profile was calculated and reviewed when there was a linear strain (stress) gradient on the surface. When there is a strain gradient, the X-ray diffraction profile becomes asymmetric, and as a result, the peak position, the position of half-maximum, and the centroid position show different values. The difference between the peak position and the centroid position appeared more clearly as the strain (stress) gradient became larger, and the basic profile width was smaller. The weighted average strain enables stress analysis when there is a strain (stress) gradient, based on the strain value corresponding to the centroid position of the diffracted X-rays. At the 1/5 Imax max height of X-ray diffraction, the position where the diffracted X-ray is divided into two by drawing a straight line parallel to the background, corresponds approximately to the centroid position.

Stress and Displacement Fields for a Propagating Crack in a Linear Functionally Gradient Material Along X Direction (X방향을 따라 선형적 함수구배인 재료에서 전파하는 균열의 응력장과 변위장)

  • Lee, Gwang-Ho;Jo, Sang-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1753-1763
    • /
    • 2002
  • Stress and displacement fields for a propagating crack in a functionally gradient material (FGM) which has shear modulus as $\mu$=$\mu$$\_$0/(1+ζX) are derived. The equations of motion in FGM which is nonhomogeneous material are different from those of homogeneous material. The stress intensity factors in stress fields have influence on odd terms of γ$\^$n/2-1/(n=1,3,5,...,) but stress at crack tip only retains term of γ$\^$-1/2/, where the γ is a radius of cylindrical coordinates centered at crack tip. When the FGM constant ζ is zero or γ→0, the fields for FGM are almost same as the those for isotropic material.

On the Contact Behavior Analysis of an O-ring Seal including a Temperature Gradient (O-링 시일에서 온도를 고려한 접촉거동 해석에 관한 연구)

  • 고영배;조승현;이영숙;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.283-288
    • /
    • 1999
  • The sealing performance of an elastomeric O-ring seat with a temperature gradient has been analyzed for the contact stress behaviors that develop between the O-ring seal and the surfaces with which it comes into contact. The leakage of an O-ring seal will occur when the pressure differential across the seal just exceeds the initial (or static) peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of restrained geometry (grooved), are investigated using the finite element method. The analysis includes material hyperelasticity and axisymmetry. The computed FEM results show that the contact stress behaviors are related to a compression rate and a temperature gradient between the vacuum chamber with a groove and the contacting plate with a cooling jacket.

  • PDF

Study on Thermal Stress of Porcelain Insulator for T/L (송전용 자기애자의 열충격 특성 연구)

  • Han, Se-Won;Cho, Han-Goo;Choi, In-Hyuk;Lee, Dong-Ill
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.208-209
    • /
    • 2006
  • This study presents the thermal stress characteristics of TL porcelain insulators(healthy and ageing) by the accelerating thermal mechanical ageing test with forced temperature gradient. The test temperature gradient is $95^{\circ}C(-35{\sim}60^{\circ}C)$, it was focused to high temperature thermal stress as compared with IEC 60575 standard. There was no a discrimination in the case of healthy aluminous porcelain insulators, dissimilarly in crystoballite insulators according to this test method. It was indicated that the long tenn reliability by thermal stress was conformed reasonably through the conventional accelerating ageing test methods.

  • PDF

A Compositional Design with Finite Element Method(FEM) in Functionally Gradient Materials (유한요소법을 이용한 경사기능재료의 조성설계)

  • Bae, I.S.;Jeon, W.Y.;Kim, I.K.;Soel, K.W.;Woo, K.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 1997
  • Although functionally gradient materials(FGM) has been developed so as to decrese the thermal stress induced by the high temperature difference between metal and ceramic, it is necessary to analyze the residual thermal stress for the fabrication of FGM. In order to reduce the residual thermal stress, compositional profile of SUS/PSZ(FGM) was suggested using finite element method(FEM). The stress analysis was made on the shape of cylinder with axial symmetry using two dimensional triangular element. For the case of various cylinder with different compositional gradient, calculated stress components were in reasonably good agreement with the expected ones. And the qualitative profile was suggested.

  • PDF

Localized Plastic Deformation in Plastic Strain Gradient Incorporated Combined Two-Back Stress Hardening Model (변형량 기울기 이론이 조합된 이중후방응력 경화모델에서의 국부적 소성변형)

  • Yun, Su-Jin;Lee, Sang-Youn;Park, Dong-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.528-535
    • /
    • 2011
  • In the present, the formation of shear band under a simple shear deformation is investigated using a rate-independent elastic-plastic constitutive relations. Moreover, the strain gradient terms are incorporated to obtain a non-local plastic constitutive relation, which in turn represented using combined two-back stress hardening model. Then, the continuum damage model is also included to the proposed model. The post-localization behavior are studied by introducing a small imperfection in a work piece. The strain gradient affects the shear localization significantly such that the intensity of shear band decreases as the strain gradient coefficient increases when the J2 flow theory is employed.

  • PDF

Stress and Displacement fields of a Propagating Mode III Crack in Orthotropic Functionally Gradient Materials with Property Gradation Along X Direction (X방향을 따라 물성구배를 갖는 직교이방성 함수구배 재료에서 전파하는 모드 III 균열의 응력장과 변위장)

  • Cho Sang-Bong;Lee Kwang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.249-259
    • /
    • 2006
  • Stress and displacement fields of a propagating Mode III crack in an orthotropic functionally gradient material (OFGM), which has (1) linear variation of shear modulus with a constant density, and (2) an exponential variation of shear modulus and density, are derived. The equations of motion in OFGM are developed and solution to the displacement and stress fields fer a propagating crack at constant speed though an asymptotic analysis. The stress terms associated with $\gamma^{-1/2}\;and\;\gamma^{0}$ are not affected by the FGM constant $\zeta$ which is nonhomogeneous parameter, only on the higher order terms, the influences of nonhomogeneity on the stress are explicitly brought out. When the FGM constant $\zeta\;is\;zero\;or\;\gamma{\rightarrow}0$, the fields for OFGM are almost same as the those for homogeneous orthotropic material. Using the stress components, the effects of nonhomogeneity on stress components are discussed.

Theoretical and numerical analysis of the influence of initial stress gradient on wave propagations

  • Tao, Ming;Chen, Zhenghong;Li, Xibing;Zhao, Huatao;Yin, TuBing
    • Geomechanics and Engineering
    • /
    • v.10 no.3
    • /
    • pp.285-296
    • /
    • 2016
  • The investigation of stress wave propagation in a medium with initial stress has very important application in the field of engineering. However, the previous research less consider the influence of initial stress gradient on wave propagation. In the present paper, the governing equation of wave propagation in elastic continuum material with inhomogeneous initial stress is derived, which indicated that the inhomogeneous initial stress changed the governing equation of wave propagation. Additionally, the definite problem of wave propagation in material with initial stress gradient is verified by using mathematical physics method. Based on the definite problem, the elastic displacement-time relationship of wave propagation is explored, which indicated that the inhomogeneous initial stress changed waveform and relationship of displacement-time histories. Furthermore, the spall process of blasting wave propagation from underground to earth surface is simulated by using LS-DYNA.

Analysis for Cracks of Functionally Gradient Materials by Photoelastic Experiment (광탄성실험에 의한 함수구배 재료 균열 해석)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.48-53
    • /
    • 2004
  • This paper suggested the method determing the stress intensity factor (SIF) for functionally gradient materials (FGMs) by photo elastic experimental method. The SIF for the center crack in a finite rectangulat plate with a linear variation of shear modulus with constant density and Poisson's ratio along the direction of the crack under mode I static loading is obtained. The exponential and linear variation of stress fields are used for obtaining the SIF. The greater crack length, the increaser the difference of the SIF between right and left side crack tip.

  • PDF

Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment

  • Ebrahimi, Farzad;Haghi, Parisa
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.21-37
    • /
    • 2018
  • In the present article, wave dispersion behavior of a temperature-dependent functionally graded (FG) nanobeam undergoing rotation subjected to thermal loading is investigated according to nonlocal strain gradient theory, in which the stress numerates for both nonlocal stress field and the strain gradient stress field. The small size effects are taken into account by using the nonlocal strain gradient theory which contains two scale parameters. Mori-Tanaka distribution model is considered to express the gradually variation of material properties across the thickness. The governing equations are derived as a function of axial force due to centrifugal stiffening and displacements by applying Hamilton's principle according to Euler-Bernoulli beam theory. By applying an analytical solution, the dispersion relations of rotating FG nanobeam are obtained by solving an eigenvalue problem. Obviously, numerical results indicate that various parameters such as angular velocity, gradient index, temperature change, wave number and nonlocality parameter have significant influences on the wave characteristics of rotating FG nanobeams. Hence, the results of this research can provide useful information for the next generation studies and accurate deigns of nanomachines including nanoscale molecular bearings and nanogears, etc.