• Title/Summary/Keyword: Stress Corrosion Strength

Search Result 264, Processing Time 0.032 seconds

A study of the sulfide stress corrosion cracking characteristic of A106 Gr B steep pipe weldment (황화수소환경에서 A106 Gr-B 강 용접부의 응력부식균열 특성 평가)

  • Lee, Gyu-Young;Park, Kwang-Jin;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.114-119
    • /
    • 2007
  • Sulfide stress cracking (SSC) of materials exposed to oilfield environment containing hydrogen sulfide $(H_{2}S)$ has been recognized as a materials failure problem. Laboratory data and field experience have demonstrated that extremely low concentration of $H_{2}S$ may be sufficient to lead to SSC failure of susceptible materials. In some cases, $(H_{2}S)$ can act synergistically with chlorides to produce corrosion and cracking failures. SSC is a form of hydrogen embrittlement that occurs in high strength steels and in localized hard zones in weldment of susceptible materials. In the heat-affected zones adjacent to welds, there are often very narrow hard zones combined with regions of high residual stress that may become embrittled to such an extent by dissolved atomic hydrogen. On the base of understanding on sulfide stress cracking and its mechanism, SSC resistance for the several materials, those are ASTM A106 Gr B using in the oil industries, are evaluated.

  • PDF

Study on the Amount of Critical Corrosion Products of Reinforcement inducing Concrete Cover Cracking with Finite Element Analysis (유한 요소법을 이용한 콘크리트 벽체 균열을 발생시키는 철근의 임계 부식량에 대한 연구)

  • 김광웅;장상엽;조용범;김용철;고영태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.361-366
    • /
    • 2002
  • The deterioration of concrete structure due to corrosion of the reinforcement has created big financial losses on the overall industries. The volume expansion of the corrosion products causes internal pressure to concrete wall around reinforcing bar. If the maximum principal stress induced by internal pressure exceeds the tensile strength of the concrete at any point of time, a crack forms at any point of material. Therefore, in terms of life assessment of concrete structure, it is very important to predict the amount of corrosion products which induces initial concrete cracking. With this objective, this paper proposes the critical amount of corrosion products at interface between reinforcement and concrete using finite element analysis. If an actual survey of corrosion rates could be made, the model might supply information for condition assessment of existing concrete structure. As the mechanical properties of corrosion product and instantaneous geometry of corroded steel are considered in the analysis, the value obtained will be more realistic.

  • PDF

The effect of shielding gases on the characteristics of super duplex weld metal (슈퍼 듀플렉스 용접부에 미치는 보호가스의 영향)

  • Hong, In-Pyo;Lee, Cheol-Hwan;Kim, Yu-Gi;Kim, Dae-Sun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.209-211
    • /
    • 2005
  • Super duplex stainless steels have been used for offshore oil and gas piping systems which are subject to corrosion atmosphere, because they have excellent resistance to Stress Corrosion Cracking (SCC) and Pitting corrosion and high strength/weight ratio. Normally, the welding for duplex stainless steels has been peformed using GTAW with Ar shielding gas. However, in case of using Ar as shielding gas, the corrosion resistance at root weld metal will be deteriorated due to loss of nitrogen from weld deposit during welding. It is wellknown that the corrosion resistance of super duplex stainless can be restored by addition of nitrogen as shielding gas. In this study, we made super duplex welding with using several kinds of shielding and purging gases and investigated the relationship between shielding gas and corrosion resistance. Consequently, it was shown that corrosion resistance of weld deposit can be restored by addition of $N_{2}$ as shielding gas.

  • PDF

Strength estimation for FRP wrapped reinforced concrete columns

  • Cheng, Hsiao-Lin;Sotelino, Elisa D.;Chen, Wai-Fah
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.1-20
    • /
    • 2002
  • Fiber-Reinforced Plastics (FRP) have received significant attention for use in civil infrastructure due to their unique properties, such as the high strength-to-weight ratio and stiffness-to-weight ratio, corrosion and fatigue resistance, and tailorability. It is well known that FRP wraps increase the load-carrying capacity and the ductility of reinforced concrete columns. A number of researchers have explored their use for seismic components. The application of concern in the present research is on the use of FRP for corrosion protection of reinforced concrete columns, which is very important in cold-weather and coastal regions. More specifically, this work is intended to give practicing engineers with a more practical procedure for estimating the strength of a deficient column rehabilitated using FRP wrapped columns than those currently available. To achieve this goal, a stress-strain model for FRP wrapped concrete is proposed, which is subsequently used in the development of the moment-curvature relations for FRP wrapped reinforced concrete column sections. A comparison of the proposed stress-strain model to the test results shows good agreement. It has also been found that based on the moment-curvature relations, the balanced moment is no longer a critical moment in the interaction diagram. Besides, the enhancement in the loading capacity in terms of the interaction diagram due to the confinement provided by FRP wraps is also confirmed in this work.

Effect of Acid Fog on Rust Formation and Fatigue Strength of Weathering Steel (산성안개가 내후성강재의 녹형성 및 피로강도에 미치는 영향)

  • Kim, Min-Gun;Ku, Eun-hoi
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.13-20
    • /
    • 2002
  • The purpose of this study is to investigate the effect of acid fog on the rust formation behavior of weathering steel (SMA50) which is used in uncoated bridges. Weathering steel didn't form the passive film under the environment of acid fog(pH5,6), whereas the environment of distilled water formed the protective oxide film. Therefore, the construction of weathering steel under the environment extremely exposed to SOx and NOx which are the main compositions of acid fog is not adequate. Fatigue limits of weathering steel under acid fog environment are remarkably decreased as compared with environment of distilled water. The corrosive constituents in acid fog has piled up the corrosion products on specimen surface and generated the corrosion pits. Because of the high stress concentration arising at this corrosion pit, relatively low fatigue limits were obtained for acid fog specimens.

  • PDF

Study on Corrosion Problems in PEMFC Cooling System (PEMFC 냉각 시스템의 물부식 방지에 관한 연구)

  • Park, Kwang-Jin;Jeong, Jae-Hwa;Kim, Jung-Hyun;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.12
    • /
    • pp.1188-1193
    • /
    • 2007
  • This study focuses on the corrosion problems of STS316(stainless steel 316) tube for the cooling system of PEMFC (Proton Exchange Membrane Fuel Cell) operation. Deionized water which is highly corrosive is used especially for cooling agent of PEMFC to eliminate electrical conductivity, The tensile stress analysis was performed to check the change of mechanical strength of cooling line and pH of the water was monitored for the observation of extent of corrosion at simulated PEMFC operating condition. When STS316 tube was exposed to deionized water for 500 hours, substantial cracks were found on the surface and the pH of water was decreased from 6.8 to 5.8. For prevention of corrosion problems, the STS316 was coated by three kinds of fluororesin such as PTFE, FEP and ETFE. Among the coating materials, PTFE was the most protective in corrosive environment and was maintained the mechanical strength. To lower the cost, the same experimental analyses were carried out for iron tubes and the result will be discussed in detail.

Evaluation of Characteristic for SS400 and STS304 steel by Weld Thermal Cycle Simulation - 2nd Report: Corrosion Characteristics (용접열사이클 재현에 의한 SS400강 및 STS304강의 특성 평가 -제2보: 부식특성)

  • Ahn, Seok-Hwan;Choi, Moon-Oh;Kim, Sung-Kwang;Son, Chang-Seok;Nam, Ki-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.33-38
    • /
    • 2007
  • The welding methods have been applied in the most structural products from multi-field of automobile, ship construction and construction, and so on. The structure steel must have enough strength of structure. In this study, SS400 steel and STS304 steel were used to estimate the corrosion characteristics of the weld thermal cycle simulated HAZ. To evaluate the corrosion characteristics, also, the materials with two conditions were used in 3.5% NaCl. The one is to the drawing with diameter of ${\Phi}10$ and the other is to the residual stress removal treatment. The electrochemical polarization test and immersion test were carried out. From test results, corrosion potential, corrosion current density, weight loss ratio and corrosion rate were measured. In the kinds of SS400 steels, corrosion potential of weld thermal cycle simulated specimens after the heat treatment showed somewhat the direction of noble potential. And in the base metal to be drawing weight loss ratio and corrosion rate occurred higher than the other kinds. In the kinds of STS304 steels, the result of base metal to be drawing was similar to results of SS400 steels, too. Two kinds of $750^{\circ}C$ and $1300^{\circ}C$ of weld thermal cycle simulation after the heat treatment were rather higher than the other kinds in weight loss ratio and corrosion rate.

Corrosion Fatigue Cracking Propagation Characteristics and its Protection for the AL-Alloys of Shipbuilding (선박용 알루미늄 합금재의 부식피로균열 진전특성과 그 억제에 관한 연구)

  • Lim, Uh-Joh;Kim, Soo-Byung;Lee, Jin-Yel
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.87-104
    • /
    • 1989
  • Recently, with the tendency of more lightening, high-strength and high-speed in the marine industries such as marine structures, ships and chemical plants, the use of the aluminium Alloy is rapidly enlarge and there occurs much interest in the study of corrosion fatigue crack characteristics. In this paper, the initiation of surface crack and the propagation characteristics on the base metal and weld zone of 5086-H116 Aluminium Alloy Plate which is one of the Al-Mg serious alloy(A5000serious) used most when building the special vessels, were investigated by the plane bending corrosion fatigue under the environments of marine, air and applying cathodic protection. The effects of various specific resistances on the initiation, propagation behavior of corrosion fatigue crack and corrosion fatigue life in the base metal and heat affected zone were examined and its corrosion sensitivity was quantitatively obtained. The effects of corrosion on the crack depth in relation to the uniform surface crack length were also investigated. Also, the structural, mechanical and electro-chemical characteristics of the metal at the weld zone were inspected to verify the reasons of crack propagation behavior in the corrosion fatigue fracture. In addition, the effect of cathodic protection in the fracture surface of weld zone was examined fractographically by Scanning Electron Microscope(S.E.M.). The main results obtained are as follows; (1) The initial corrosion fatigue crack sensitibity under specific resistance of 25Ω.cm% show 2.22 in the base metal and 19.6 in the HEZ, and the sensitivity decreases as specific resistance increases (2) By removing reinforcement of weldment, the initiation and propagation of corrosion crack in the HAZ are delayed, and corrosion fatigue life increases. (3) As specific resistance decreases, the sensitivity difference of corrosion fatigue life in the base metal and HAZ is more susceptible than that of intial corrosion fatigue crack. (4) Experimental constant, m(Paris' rule) in the marine environment is in the range of about 3.69 to 4.26, and as specific resistance increases, thje magnitude of experimental constant, also increases and the effect by corrosion decreases. (5) Comparing surface crack length with crack depth, the crack depth toward the thickness of specimen in air is more deeply propagated than that in corrosion environment. (6) The propagation particulars of corrosion fatigue crack for HAZ under initial stress intensity factor range of $\Delta$k sub(li) =27.2kgf.mm super(-3/2) and stress ratio of R=0 shows the retardative phenomenon of crack propagation by the plastic deformation at crack tip. (7) Number of stress cycles to corrosion fatigue crack initiation of the base metal and the welding heat affected zone are delayed by the cathodic protection under the natural sea water. The cathodic protection effect for corrosion fatigue crack initiation is eminent when the protection potential is -1100 mV(SCE). (8) When the protection potential E=-1100 mV(SCE), the corrosion fatigue crack propagation of welding heat affected zone is more rapid than that of the case without protection, because of the microfissure caused by welding heat cycle.

  • PDF

Influence of Salt Solution Concentration on Corrosion Pit Growth Characteristic of Dual Phase Steel (복합조직강의 부식피트 성장특성에 미치는 식염수농도의 영향)

  • Oh, Sae-Wook;Kang, Ho-Min;Kim, Tae-Man;Do, Yeong-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.78-86
    • /
    • 1988
  • In order to investigate the corrosion pit occurrence and growth characteristic of M.E.F.(martensite encapsulated islands of ferrite) dual phase steel was made with a suitable heat treatment of raw material(SS41), a corrosion fatigue test was performed under rotary bending in the salt solution having a concentration from 0.01 wt percent to 3.5 wt percent. The fatigue strength of dual phase steel was remarkably decreased with an increase in concentration of salt solution; approximately from 63% to 80% in case of dual phase steel and from 40% to 71% in case of raw material. Corrosion pit occurred in the martensite phase and fatigue cracks from corrosion pits were selectively propagated in martensite phases. In the observation of corrosion pits at the origin of fatigue cracks, it had been found that corrosion pits were grown into hemispherical pits and a/c(the surface diameter, 2c and the depth, a of corrosion pit)was about 1.0-1.5regardless of the variation of salt solution concentration. The difference of corrosion pit depth growth rate was increased with an increase in concentration of salt solution according to an increase in stress level.

  • PDF

Failure Assessment and Strength of Steam Generator Tubes with Wall Thinning (증기발생기 전열관 감육부의 강도 및 손상평가)

  • Seong, Ki-Yong;Ahn, Seok-Hwan;Yoon, Ja-Moon;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.50-59
    • /
    • 2007
  • Steam generator tubes are degraded from wear, stress corrosion cracking, rupture and fatigue and so on. Therefore, the failure assessment of steam generator tube is very important for the integrity of energy plants. In the steam generator tubes, sometimes, the local wall thinning may result from severe degradations such as erosion-corrosion damage and wear due to vibration. In this paper, the elasto-plastic analysis was performed by FE code ANSYS on steam generator tubes with wall thinning. Also, the four-point bending tests were performed on the wall thinned specimens, and then it was compared with the analysis results. We evaluated the failure mode, fracture strength and fracture behavior from the experiment and FE analysis. Also, it was possible to predict the crack initiation point by estimating true fracture ductility under multi-axial stress conditions at the center of the thinned area from FE analysis.