• 제목/요약/키워드: Stress Corrosion Strength

검색결과 264건 처리시간 0.02초

오스테나이트 스테인리스강 용접부의 응력부식 거동에 미치는 용접 방법의 영향 (The effect of welding methods on the stress corrosion behavior of the welded austenitic stainless steel)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권4호
    • /
    • pp.42-50
    • /
    • 1995
  • To study the effect of welding methods on the Stress Corrosion Cracking (SCC) behavior of welded AISI type 316L and 304 austenitic stainless steel, the Slow Strain Rate Technique(SSRT) has been adopted in the boiling 45 wt% $MgCl_2$ solution. The results are as follows. 1) Welded sections are more susceptible than base metal in SCC, and the rank of SCC, and the rasistance in welding method is TIG, MIG, $CO_2$ and ARC. 2) The Ultimate tensile strength(UTS) and the strain of both base metal and welded joint are reduced as decreasing extension rate. 3) The SCC resistance of 316L base metal and welded sections are superior than that of 304. 4) The tendency of pitting and the SCC suseptibility are agreed well, and the SCC site is welded deposit section in 316L whereas HAZ in 304.

  • PDF

SAE 5155강의 컴퓨터부식피로 균열에 미치는 압축잔류응력의 영향 (The Effect of Compressive Residual Stress on Computer Corrosion Fatigue Crack of SAE 5155)

  • 박성모;문광석;박경동
    • 한국기계가공학회지
    • /
    • 제6권2호
    • /
    • pp.34-40
    • /
    • 2007
  • Antifatigue failure technology take an important part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel and improving the fatigue strength on surface. Therefore, this paper the effect of compressive residual stress and corrosion of spring steel(SAE 5155)by shot-peening on fatigue crack growth characteristics in stress ratio(R=0.05)was investigated with considering fracture mechanics. By using the methods mentioned above, We arrived at the following conclusions. The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material. And in stage I, ${\Delta}Kth$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material was higher than that of the un-peening material. That is concluded from effect of da/dN. Finally fracture of shot-peening material and un-peening material was identified and discussed in this study.

  • PDF

가압형 경수로 스테인리스강 내부 구조물의 조사유기 응력부식균열에 대한 통계적 수명 예측 (Statistical Life Prediction on IASCC of Stainless Steel for PWR Core Internals)

  • 김성우;황성식;이연주
    • 대한금속재료학회지
    • /
    • 제50권8호
    • /
    • pp.583-589
    • /
    • 2012
  • This work is concerned with a statistical approach to the life prediction on irradiation-assisted stress corrosion cracking (IASCC) of stainless steel (SS) for core internals of a pressurized water reactor (PWR). The previous results of the time-to-failure of IASCC measured on neutron-irradiated stainless steel components were statistically analyzed in terms of stress and irradiation. The accelerating life testing model of IASCC of cold worked Type 316 SS was established based on an inverse power model with two stress-variables, the applied stress and irradiation dose. Considering the variation of the yield strength and applied stress with the irradiation dose in the model, the remaining life of the baffle former bolt was statistically predicted during operation under complex environments of stress and irradiation.

Meso-Scale Approach for Prediction of Mechanical Property and Degradation of Concrete

  • Ueda, Tamon
    • Corrosion Science and Technology
    • /
    • 제3권3호
    • /
    • pp.87-97
    • /
    • 2004
  • This paper presents a new approach with meso scale structure models to express mechanical property, such as stress - strain relationships, of concrete. This approach is successful to represent both uniaxial tension and uniaxial compression stress - strain relationship, which is in macro scale. The meso scale approach is also applied to predict degraded mechanical properties of frost-damaged concrete. The degradation of mechanical properties with frost-damaged concrete was carefully observed. Strength and stiffness in both tension and compression decrease with freezing and thawing cycles (FTC), while stress-free crack opening in tension softening increases. First attempt shows that the numerical simulation can express the experimentally observed degradation by introducing changes in the meso scale structure in concrete, which are assumed based on observed damages in the concrete subjected to FTC. At the end applicability of the meso scale approach to prediction of the degradation by combined effects of salt attack and FTC is discussed. It is shown that clarification of effects of frost damage in concrete on corrosion progress and on crack development in the damaged cover concrete due to corrosion is one of the issues for which the meso scale approach is useful.

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

Materials Properties of Nickel Electrodeposits as a Function of the Current Density, Duty Cycle, Temperature and pH

  • Kim, Dong-Jin;Kim, Myung Jin;Kim, Joung Soo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • 제5권5호
    • /
    • pp.168-172
    • /
    • 2006
  • Alloy 600 having a superior resistance to a corrosion is used as a steam generator tubing in nuclear power plants. In spite of its high corrosion resistance, there are many tubings which experience corrosion problems such as a SCC under the high temperature and high pressure environments of nuclear power plants. The Alloy 600 tubing can be repaired by using a Ni electroplating having an excellent SCC resistance. In order to carry out a successful Ni electrodeposition inside a steam generator tubing, the effects of various parameters on the material properties of the electrodeposit should be elucidated. Hence this work deals with the effects of an applied current density, duty cycle($T_{on}/(T_{on}+T_{off})$) of a pulse current, bath temperature and solution pH on the material properties of Ni electrodeposit obtained from a Ni sulphamate bath by analyzing the current efficiency, potentiodynamic curve, hardness and stress-strain curve. Hardness, YS(yield strength) and TS(tensile strength) decreased whereas the elongation increased as the applied current density increased. This was thought to be by a concentration depletion at the interface of the electrodeposit/solution, and a fractional decrease of the hydrogen reduction reaction. As the duty cycle increased, the hardness, YS and TS decreased while the elongation increased. During an off time at a high duty cycle, the concentration depletion could not be recovered sufficiently enough to induce a coarse grain sized electrodeposit. With an increase of the solution temperature and pH, the YS and TS increased while the elongation decreased. The experimental results of the hardness and the stress-strain curves can be supplemented by the results of the potentiodynamic curve.

차량용 부품재료의 환경부식 특성 연구 (Study on Environment Corrosion Characteristics of Automobile Component Materials)

  • 박경동;신영진
    • 한국기계가공학회지
    • /
    • 제5권3호
    • /
    • pp.86-91
    • /
    • 2006
  • The compressive residual stress, which is inducing by shot peening process, has the effect of increasing the intrinsic fatigue strength of surface and therefore would be beneficial in reducing the probability of fatigue damage. However, it was not known that the effect of shot peening in corrosion environment. In this study, the influence of shot peening and corrosion condition for corrosion property were investigated on immersed in 3.5% NaCl, 10% HNO3 + 3% HF, 6% $FeCl_3$. The immersion test was performed with two kind of specimen. The immersion periods was performed 150days. Corrosion potential, weight loss were investigated from experimental results. From test results, the effect of shot peening on the corrosion characteristics was evaluated.

  • PDF

선박용 고강도 Al합금(5456-H116)의 최적 방식 전위결정에 관한 연구 (Investigation on optimum protection potential of high-strength Al alloy(5456-H116) for application in ships)

  • 김성종;고재용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.157-168
    • /
    • 2006
  • Recently, interest in using Al alloys in ship construction instead of fiber-reinforced plastic (FRP) has increased because of the advantages of A) alloy ships over FRP ships, including high speed, increased load capacity. and ease of recycling. This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. These results will provide reference data for ship design by determining the optimum protection potential regarding hydrogen embrittlement and stress corrosion cracking. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a Passive film. In a potentiostatic experiment. the current density after 1200 sec in the Potential range of $-0.68\~-1.5\;V$ was low. This low current density indicates the protection potential range. Elongation at an applied potential of 0 V was high in this SSRT. However, corrosion protection under these conditions is impossible because the mechanical properties are worse owing to decreased strength resulting from the active dissolution reaction in parallel parts of the specimen. A film composed of $CaCO_3\;and\;Mg(OH)_2$ confers corrosion resistance. However, at potentials below -1.6 V forms non-uniform electrodeposition coating, since there is too little time to form a coating. Therefore, we concluded that the mechanical properties are poor because the effect of hydrogen gas generation exceeds that of electrodeposition. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.45 to -0.9 V (SSCE).

동합금의 워터캐비테이션피닝에 의한 내구성과 부식특성 평가 (Evaluation of Corrosion and the Anti-Cavitation Characteristics of Cu Alloy by Water Cavitation Peening)

  • 김성종;한민수;김민성
    • Corrosion Science and Technology
    • /
    • 제11권5호
    • /
    • pp.184-190
    • /
    • 2012
  • Cu alloy is widely used for marine applications due to its excellent ductility and high resistance for corrosion as wells as cavitation. However, long term exposure of the material to marine environments may result in damages caused by cavitation and corrosion. Water cavitation peening has been introduced in order to improve resistance of Cu alloy to corrosion and cavitation. The technology induces compressive residual stress onto the surface, and thus enhances the fatigue strength and life. In this study, the characteristics of the material were investigated by using water cavitaiton peening technique, and results showed that 2 minutes of water cavitation peening indicated the considerable improvement in hardness. On the other hand, over 10 minutes of water cavitation peening accelerated damages to the surface. In the case of ALBC3, water cavitation peening in the range of 2 to 10 minutes has shown the excellent durability and corrosion resistance while minimizing surface damages.

자동차 강재의 수소취성 연구에 대한 고찰 (A Study on Hydrogen Embrittlement Research on Automotive Steel Sheets)

  • 양원석;서지원;안승호
    • Corrosion Science and Technology
    • /
    • 제17권4호
    • /
    • pp.193-201
    • /
    • 2018
  • In order to suppress $CO_2$ emission and protect passengers in case of vehicle collision, continuous efforts are being made to increase the application ratio and tensile strength of advanced high strength steels used in the manufacturing of automotive body. Simultaneously, hydrogen embrittlement which was not a concern in the past has currently become a major issue due to microstructure that is sensitive to hydrogen uptake. The sensitivity increases with residual stress and hydrogen uptake content. Many automotive OEM companies and mill makers are setting specifications to control hydrogen embrittlement. The factors which lead to hydrogen embrittlement are material sensitivity, residual stress, and hydrogen concentration; researches are in progress to develop countermeasures. To reduce material sensitivity, mill makers add high energy trap elements or microstructure refinement elements. Automotive OEM companies design the car parts not to concentrate local stress. And they manage the levels to not to exceed critical hydrogen concentration. In this article, we have reviewed hydrogen embrittlement evaluation methods and corresponding solutions that are being studied in automobile manufacturing industries and mill makers.