• 제목/요약/키워드: Stress Corrosion Strength

검색결과 264건 처리시간 0.024초

세라믹 용사된 S45C강재의 기계적 특성 및 피로강도 (Mechanical Characteristics and Fatigue Strength of Ceramic-Sprayed S45C Steel)

  • 오맹종;오창배;김귀식
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.32-38
    • /
    • 1998
  • This paper is to investigate of microhardness, adhesive strength, tensile strength, and fatigue strength of ceramic sprayed steel. Rotary bending fatigue tests have been conducted at room temperature in air and 3% NaCl solution using specimens of carbon steel(S45C) with sprayed coating layers of Ni-4.5% Al(under coating) and $TiO_2$ (top coating). The microhardness has been improved at $800^{\circ}C$ heat treatment and 150mm spraying distance. Tensile strength of the sprayed steel is dependent on the substrate strength. The fatigue strength of the sprayed steel is larger than that of substrate due to blasting and constraint surface of plastic deformation effect. In low stress level, the corrosion fatigue strength of the sprayed steel were lower than that of fatigue strength in air by corrosion.

  • PDF

Bond strength modeling for corroded reinforcement in reinforced concrete

  • Wang, Xiaohui;Liu, Xila
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.863-878
    • /
    • 2004
  • Steel corrosion in reinforced concrete structures leads to concrete cover cracking, reduction of bond strength, and reduction of steel cross section. Among theses consequences mentioned, reduction of bond strength between reinforcement and concrete is of great importance to study the behaviour of RC members with corroded reinforcement. In this paper, firstly, an analytical model based on smeared cracking and average stress-strain relationship of concrete in tension is proposed to evaluate the maximum bursting pressure development in the cover concrete for noncorroded bar. Secondly, the internal pressure caused by the expansion of the corrosion products is evaluated by treating the cracked concrete as an orthotropic material. Finally, bond strength for corroded reinforcing bar is calculated and compared with test results.

Numerical models for stress analysis of non-uniform corroded tubular members under compression

  • Chinh, Vu Dan;Nguyen, Ha Thi Thu
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.517-530
    • /
    • 2022
  • In re-assessing the Jacket-type fixed steel structures, the current standards often allow the simplicity of corrosion sections using local buckling or equivalent section approach to applying empirical formulae of frame stress and resistance analyses. However, those approaches can lead to significant errors for non-uniform corroded frames in a specific area, including force distribution, stress, and allowable strength of the tubular section, compared to the actual cases. This paper investigates a suitable approach to determine the actual stress on non-uniform corroded tubular frames under compression through the non-linear ABAQUS model by considering the effect of large deformation on the frame axis and the frame section. There are 3 scenarios of interest. In the 1st and 2nd scenarios with simple corrosion cases, the stress ratios using the numerical model and theoretical formulae correspond to the calculation of allowable strength reduction ratios in standards. However, scenario 3, which describes non-uniform corroded sections based on survey data, provides considerable differences in results. Therefore, it proves the reliable and effective results when using this method to analyze the resistance of the actual corroded section in the Jacket platforms.

Al-황동의 분극특성에 미치는 응력의 영향 (Effect of Stress on the Polarization Characteristic of Al-brass)

  • 임우조;정해규;심경태
    • 한국안전학회지
    • /
    • 제19권2호
    • /
    • pp.1-5
    • /
    • 2004
  • Al-brass is the raw material of mnufacturing tubes for heat exchanger of vessel where seawater is used to coolant because it has high level of heat coductivity and excellent mechanical properties and high level of corrosion resistance due to cuprous oxide($Cu_2O$) layer against seawater. However, damage of Al-brass tubes for heat exchanger of vessel is reported that local corrosion such as stress corrosion cracking occurred by synergism effect between mechanical factor and corrosion environment. In this study, to investigate on the effect of stress on the polarization characteristics of Al-brass. At the stress of 0% and 95% yield strength by constant displacement tester, in 3.5% NaCl + 0.1% $NH_4OH$ solution, the polarization tests were carried out. And thus open circuit potential, corrosion current density, anodic polarization, cyclic polarization and dezincification behavior of Al-brass are investigated.

표면가공법에 따른 현가장치재의 부식특성에 관한 연구 (A Study on Cormsion Characteristics of Suspension Material by Surface Processing)

  • 박경동;류형주
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.17-23
    • /
    • 2005
  • In this study, the high strength and superior toughness spring steels as the suspension material, used for automobile and railroad industries were utilized to carry out the following investigations. Corrosion times were controlled in 7, 14,30 and 60days to examine the relation between corrosion pit and compressive residual stress in the static corrosion environment after shot peened. And then corrosion current and corrosion potential were measured for every 24 hours to investigate the corrosion mechanism. Shot peened material shows the low or rate of corrosion current as compared with unpeened material. In case of hot peened material which has the highest residual stress, it has a low corrosion current density.

Corrosion of Titanium Alloys in High Temperature Seawater

  • Pang, J.J.;Blackwood, D.J.
    • Corrosion Science and Technology
    • /
    • 제14권4호
    • /
    • pp.195-199
    • /
    • 2015
  • Materials of choice for offshore structures and the marine industry have been increasingly favoring materials that offer high strength-to-weight ratios. One of the most promising families of light-weight materials is titanium alloys, but these do have two potential Achilles' heels: (i) the passive film may not form or may be unstable in low oxygen environments, leading to rapid corrosion; and (ii) titanium is a strong hydride former, making it vulnerable to hydrogen embrittlement (cracking) at high temperatures in low oxygen environments. Unfortunately, such environments exist at deep sea well-heads; temperatures can exceed $120^{\circ}C$, and oxygen levels can drop below 1 ppm. The present study demonstrates the results of investigations into the corrosion behavior of a range of titanium alloys, including newly developed alloys containing rare earth additions for refined microstructure and added strength, in artificial seawater over the temperature range of $25^{\circ}C$ to $200^{\circ}C$. Tests include potentiodynamic polarization, crevice corrosion, and U-bend stress corrosion cracking.

Study of Hot Salt Stress Corrosion Crack Initiation of Alloy IMI 834 by using DC Potential Drop Method

  • Pustode, Mangesh D.;Dewangan, Bhupendra;Raja, V.S.;Paulose, Neeta;Babu, Narendra
    • Corrosion Science and Technology
    • /
    • 제15권5호
    • /
    • pp.203-208
    • /
    • 2016
  • DC potential drop technique was employed during the slow strain rate tests to study the hot salt stress corrosion crack (HSSCC) initiation at 300 and $400^{\circ}C$. Threshold stresses for HSSCC initiation were found to about 88 % of the yield strength at both temperatures, but the time from crack initiation to final failure (${\Delta}t_{scc}$) decreased significantly with temperature, which reflects larger tendency for brittle fracture and secondary cracking. The brittle fracture features consisted of transgranular cracking through the primary ${\alpha}$ grain and discontinuous faceted cracking through the transformed ${\beta}$ grains.

조선용 고장력강재와 보통강도강재간의 용접부위의 부식피로와 전기방식에 관한 연구 (A study on the corrosion fatigue and cathodic protection of the welded zone between high tensile strength steel and general strength steel used for the shipbuilding)

  • 전대희;김원녕;이의호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.39-50
    • /
    • 1984
  • The plane bending corrosion fatigue test was performed on the welded zone between SM58 steel plate and SM41 steel plate jointed with submerged arc welding in the air and in the natural sea water with various conditions. The main results obtained from the test are summarized as follows: 1) The welded zone of the steel plates has the lowest impact strength and the highest electrode potential, but the hardness was mediate of SM58 base and SM41 base. 2) The cathodic protection of the welded zone was also effective for the plane bending corrosion fatigue, and the optimum protection potential of the welded zone was -1,000 mV SCE. 3) The corrosion fatigue strength under the various stress conditions of the steel plate could be estimated and also the require safety factors on the design could be obtained from the plane bending fatigue limit diagram.

  • PDF

고장력강의 부식피로균열전파에 미치는 하중파형의 영향과 양극용해기구의 역할 (Effect of Stress Waveform on Corrosion Fatigue Crack Propagation in High Strength Steels-the Role of Anodic Dissolution Mechanism)

  • 하회석;이성근
    • 한국해양공학회지
    • /
    • 제7권1호
    • /
    • pp.147-155
    • /
    • 1993
  • The effect of stress waveforms on corrosin fatigue and the role of dissolution mechanism in 3NilCr steel and 20Ni maraging steel have been investigated in aerated 3% NaCl solution and synthetic seawater under sinusoidal, triangular, square, positive sawtooth, negative sawtooth, and trapezoidal stress waveforms with open circuit at frequency of 1Hz and stress ratio of 0.1. The crack growth rates under square waveform were substantially lower than under sinusoidal and triangular waveforms, but the crack growth rates under sinusoidal waveform were slightly higher under triangular waveform. For a given frequency the growth rates under the positive sawtooth waveform are higher than those under the negative sawtooth waveform. The fatigue crack growth rates of most specimens were in good agreement with the values calculated by the model based on the dissoultion mechanism.

  • PDF

3% NaCl 수용액중에서 복합조직강의 부식피로거동에 미치는 제2상 속도변화의 영향 (Effect of the change of second phase hardness on corrosion fatigue behavior of dual phase steel in 3% nacl solution)

  • 오세욱;김웅집
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.85-93
    • /
    • 1992
  • The only hardness of 2nd phase of martensite in dual phase steel which was composed of the martensite and ferrite was changed. Fatigue test was conducted by cantilever type of self-made rotated bending fatigue testing machine. The corrosion fatigue fracture behaviors of dual phase steel were investigated in 3% NaCl solution at $N_f$ = $1.5\times$$10^5$ $N_f$=1.0 $\times$ $10^6$ cycles. The fatigue strength was increased with increasing the hardness of 2nd phase. The size and number of corrsion pits were influenced by the 2nd phase hardness and pits remain constant in size just after they were transited into cracks. The life of crack initiation was effected by stress level. The shape of relation of $\Delta$K and da/dn has smaller scattering in it in 3% NaCl solution than that in air. The higher the 2nd phase hardness is, the higher the corrosion fatigue life becomes. Corrosion fatigue fracture behavior was effected by mechanics in case of $N_f$=1.5$\times$10$^5$$N_f$=1.5$\times$10$^6$ cycles.

  • PDF