• 제목/요약/키워드: Stress Corrosion

검색결과 911건 처리시간 0.026초

표면가공법에 따른 현가장치재의 부식특성에 관한 연구 (A Study on Cormsion Characteristics of Suspension Material by Surface Processing)

  • 박경동;류형주
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.17-23
    • /
    • 2005
  • In this study, the high strength and superior toughness spring steels as the suspension material, used for automobile and railroad industries were utilized to carry out the following investigations. Corrosion times were controlled in 7, 14,30 and 60days to examine the relation between corrosion pit and compressive residual stress in the static corrosion environment after shot peened. And then corrosion current and corrosion potential were measured for every 24 hours to investigate the corrosion mechanism. Shot peened material shows the low or rate of corrosion current as compared with unpeened material. In case of hot peened material which has the highest residual stress, it has a low corrosion current density.

TiN 피복강재의 부식피로강도특성 (Characteristics of corrosion fatigue strength of TiN coating steel)

  • 김귀식;현경수;오맹종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제19권3호
    • /
    • pp.62-69
    • /
    • 1995
  • In order to investigate the effect of TiN coating on corrosion fatigue behavior of metal, the rotary bending corrosion fatigue tests were carried out in 3% NaCl solution by using the round bar specimens of high-speed steel, SKH-9, coated with TiN by PVD method. From the experimental results, fatigue strength of TiN coating steel in air was obvious improvement as compared with that of the substrate because of the restriction of dislocation movement in near surface of the substrate by hard thin film. In 3% NaCl solution, corrosion fatigue life of TiN coating specimen in high stress level was improvement same as in air. But in low stress level, corrosion fatigue life of TiN coating one was equivalent to that without coating, due to much crack initiated from corrosion pits formed at the substrate by failure of coating layer.

  • PDF

Irradiation Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in Water Reactors

  • Yonezawa, Toshio
    • Corrosion Science and Technology
    • /
    • 제7권2호
    • /
    • pp.77-84
    • /
    • 2008
  • Based upon the good compatibility to neutron irradiation and high temperature water environment, austenitic stainless steels are widely used for core internal structural materials of light water reactors. But, recently, intergranular cracking was detected in the stainless steels for the core applications in some commercial PWR plants. Authors studied on the root cause of the intergranular cracking and developed the countermeasure including the alternative materials for these core applications. The intergranular cracking in these core applications are defined as an irradiation assisted mechanical cracking and irradiation assisted stress corrosion cracking. In this paper, the root cause of the intergranular cracking and its countermeasure are summarized and discussed.

The Effect of Temperature on Stress Corrosion Cracking of AI Brass under Flow

  • Lim, Uh-Joh;Jeong, Hae-Kyoo
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.135-140
    • /
    • 2003
  • The effect of temperature on stress corrosion cracking o f Al-brass used in vessel heat exchanger tube was studied in 3.5% NaCI + 0.1% $NH_4OH$ solution. The SCC test using a CDT(constant displacement test) and the specimens using a SEN(single edge notched) specimens. For setting the environment similar to working environment of a heat exchanger, the specimens was immersed in solution and solution flow onto the specimens were performed. The results are as follows : The latent time of stress corrosion crack occurrence gets shorter, as the temperature gets higher. Dezincification phase showed around the crack occupy wider range, as the temperature gets higher. Zn composition falls under 4% at the dezincifiction area.

Study of Hot Salt Stress Corrosion Crack Initiation of Alloy IMI 834 by using DC Potential Drop Method

  • Pustode, Mangesh D.;Dewangan, Bhupendra;Raja, V.S.;Paulose, Neeta;Babu, Narendra
    • Corrosion Science and Technology
    • /
    • 제15권5호
    • /
    • pp.203-208
    • /
    • 2016
  • DC potential drop technique was employed during the slow strain rate tests to study the hot salt stress corrosion crack (HSSCC) initiation at 300 and $400^{\circ}C$. Threshold stresses for HSSCC initiation were found to about 88 % of the yield strength at both temperatures, but the time from crack initiation to final failure (${\Delta}t_{scc}$) decreased significantly with temperature, which reflects larger tendency for brittle fracture and secondary cracking. The brittle fracture features consisted of transgranular cracking through the primary ${\alpha}$ grain and discontinuous faceted cracking through the transformed ${\beta}$ grains.

반복하중 하에서 철근부식을 고려한 철근콘크리트 부재의 부착응력-슬립 거동에 관한 실험적 연구 (Experimental Study on Bond Stress-Slip Behavior of Reinforced Concrete Member Under Repeated Loading Considering Steel Corrosion)

  • 김철민;김지상;박종범;장승필
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.545-548
    • /
    • 2006
  • This study includes the experimental investigation on the fatigue-bond behavior with respect to the various rates of steel corrosion. Major criteria of test variables are the rates of steel corrosion by chloride ion and the ratio of the applied stress to the bond failure stress. According to the test results, the slip versus number of load cycles relation was found to be approximately linear in double logarithmic scale, not only without steel corrosion but also with steel corrosion. This research will be helpful for the realistic durability design and condition assessment of reinforced concrete structures.

  • PDF

원자력 발전소 배관의 응력부식에 의한 파손확률 해석 (Analysis of Failure Probabilities of Pipes in Nuclear Power Plants due to Stress Corrosion Cracking)

  • 박재학;이재봉;최영환
    • 한국안전학회지
    • /
    • 제26권2호
    • /
    • pp.6-12
    • /
    • 2011
  • The failure probabilities of pipes in nuclear power plants due to stress corrosion are obtained using the P-PIE program, which is developed for evaluating failure probability of pipes based on the existing PRAISE program. Leak, big leak and LOCA(loss of coolant accident) probabilities are calculated as a function of operating time for several pipes in a domestic nuclear plant. The sensitivity analysis is also performed to find out the important parameters for the failure of pipes due to stress corrosion. The results show that the steady state oxygen concentration and steady state temperature are important parameters and failure probability is very low when the oxygen concentration is maintained according to the regulation.

Stress Corrosion Cracking Behavior of Cold Worked 316L Stainless Steel in Chloride Environment

  • Pak, Sung Joon;Ju, Heongkyu
    • 한국주조공학회지
    • /
    • 제40권5호
    • /
    • pp.129-133
    • /
    • 2020
  • The outcomes of solution annealing and stress corrosion cracking in cold-worked 316L austenitic stainless steel have been studied using x-ray diffraction (XRD) and the slow strain rate test (SSRT) technique. The good compatibility with a high-temperature water environment allows 316L austenitic stainless steel to be widely adopted as an internal structural material in light water reactors. However, stress corrosion cracking (SCC) has recently been highlighted in the stainless steels used in commercial pressurized water reactor (PWR) plants. In this paper, SCC and inter granular cracking (IGC) are discussed on the basis of solution annealing in a chloride environment. It was found that the martensitic contents of cold-worked 316L stainless steel decreased as the solution annealing time was increased at a high temperature. Moreover, mode of SCC was closely related to use of a chloride environment. The results here provide evidence of the vital role of a chloride environment during the SCC of cold-worked 316L.

ASSESSMENT OF POSSIBILITY OF PRIMARY WATER STRESS CORROSION CRACKING OCCURRENCE BASED ON RESIDUAL STRESS ANALYSIS IN PRESSURIZER SAFETY NOZZLE OF NUCLEAR POWER PLANT

  • Lee, Kyoung-Soo;Kim, W.;Lee, Jeong-Geun
    • Nuclear Engineering and Technology
    • /
    • 제44권3호
    • /
    • pp.343-354
    • /
    • 2012
  • Primary water stress corrosion cracking (PWSCC) is a major safety concern in the nuclear power industry worldwide. PWSCC is known to initiate only in the condition in which sufficiently high tensile stress is applied to alloy 600 tube material or alloy 82/182 weld material in pressurized water reactor operating environments. However, it is still uncertain how much tensile stress is re-quired to generate PWSCC or what causes such high tensile stress. This study was performed to pre-dict the magnitude of weld residual stress and operating stress and compare it with previous experi-mental results for PWSCC initiation. For the study, a pressurizer safety nozzle was selected because it is reported to be vulnerable to PWSCC in overseas plants. The assessment was conducted by nu-merical analysis. Before performing stress analysis for plant conditions, a preliminary mock-up ana-lysis was done. The result of the preliminary analysis was validated by residual stress measurement in the mock-up. After verification of the analysis methodology, an analysis under plant conditions was conducted. The analysis results show that the stress level is not high enough to initiate PWSCC. If a plant is properly welded and operated, PWSCC is not likely to occur in the pressurizer safety nozzle.

Effects of environmental parameters on chloride-induced stress corrosion cracking behavior of austenitic stainless steel welds for dry storage canister application

  • Seunghyun Kim;Gidong Kim;Chan Kyu Kim;Sang-Woo Song
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.317-327
    • /
    • 2024
  • This study investigated the chloride-induced stress corrosion cracking (CISCC) behavior expected to occur in welds of austenitic stainless steel, which are considered candidate materials for dry storage containers for spent nuclear fuel. The behavior was studied by varying temperature, relative humidity (RH), and chloride concentration. 304L-ER308L welded plates were processed into U-bend specimens and exposed to a cyclic corrosion chamber for 12 weeks. The CISCC behavior was then analyzed using electron microscopy. A previous study by the authors confirmed that CISCC occurred in ER308L at 60 ℃, 30% RH, and 0.6 M NaCl via selective corrosion of δ-ferrite. When the temperature was lowered from 60 ℃ to 50 ℃, CISCC still occurred. However, when the humidity was reduced to 20% RH, CISCC did not happen. This can be attributed to the retardation of the deliquescence of NaCl at lower humidity, which was insufficient to promote CISCC. Furthermore, increased chloride concentration to 1.0 M resulted in the absence of CISCC and widespread surface corrosion with severe pitting corrosion because of the increase in thin film thickness.