• Title/Summary/Keyword: Stress/Strain Effect

Search Result 1,402, Processing Time 0.024 seconds

Yielding behavior and yield strength of plate structure containing softened region (연화부를 포함한 판재의 항복거동과 항복강도)

  • 배강열;김희진;이태열;엄동석
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.79-88
    • /
    • 1990
  • Welded joint often contains soft or softened regions such as the HAZ of TMCP steel welded with high heat input. In this study, the equivalent yield strength of plate structure containing softened region was predicted by FEM analysis, and its incremental behavior was explained with the results of the analysis. The calculated results of yield strength indicated the following for the plate structures. 1) As the softened region starts to yield, shear stress begins to build up along the boundary between base metal and softened region. This results in multi-axial stress condition which gives restraint on the softened region. 2) Restraint effect has a significant influence on the distribution of the shear stress, the nominal stress, and the strain. 3) The yielding behavior of softened region becomes the same as that of base metal when both ratios of length to width and thickness to width of softened region are larger than 30 and 13 respectively.

  • PDF

Steel and FRP double-tube confined RAC columns under compression: Comparative study and stress-strain model

  • Xiong, Ming-Xiang;Chen, Guangming;Long, Yue-Ling;Cui, Hairui;Liu, Yaoming
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.257-270
    • /
    • 2022
  • Recycled aggregate concrete (RAC) is rarely used in load-carrying structural members. To widen its structural application, the compressive behavior of a promising type of composite column, steel-fiber reinforced polymer (FRP) double-tube confined RAC column, has been experimentally and analytically investigated in this study. The objectives are the different performance of such columns from their counterparts using natural aggregate concrete (NAC) and the different mechanisms of the double-tube and single-tube confined concrete. The single-tube confined concrete refers to that in concrete-filled steel tubular (CFST) columns and concrete-filled FRP tubular (CFFT) columns. The test results showed that the use of recycled coarse aggregates (RCA) affected the axial load-strain response in terms of deformation capacity but such effect could be eliminated with the increasing confinement. The composite effect can be triggered by the double confinement of the steel and carbon FRP (CFRP) tubes but not by the steel and polyethylene terephthalate (PET) FRP tubes. The proposed analysis-oriented stress-strain model is capable to capture the load-deformation history of such steel-FRP double-tube confined concrete columns under axial compression.

Cyclic Creep Strain of Cu Pure Metal (CU 순금속의 사이클릭 크리프 변형)

  • Jeong, S.U.;Lee, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.194-199
    • /
    • 2000
  • The creep rate is affected by the temperature and in fact. if the temperature above $T_M/2(T_M:melting\;point)$. The aim of the present investigation is to study the relationship of static creep and cyclic creep behavior of pure copper and the formulation of these phenomena with the special attention to the instantaneous strain. strain rate from time and number of cycles have the same inclination Steady state creep rate depend upon maximum stress and can be expressed as linear function according to Power law creep equations Creep rupture time has relation with creep rate. and it make a group represented as the same direct line regardless of max stress, stress ratio and the temperature. Initial strain effect on continuous creep deformation. and have guantitative relationship between elastic and Plastic strain. LMP have similar tendency than OSDP and MHP according to temperature

  • PDF

Fatigue Life Analysis of Butt-welded specimen by Local Strain Approach (국부변형률방법을 이용한 용접시험편의 피로수명 해석)

  • Lee Dong-Hyong;Seo Jung-Won;Goo Byeong-choon;Seok Chang-Sung
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.73-78
    • /
    • 2003
  • The residual stresses and. distortions of structures by welding exert negative effect on the safety of railroad structures. This investigation performs a thermal elasto-plastic analysis using finite element techniques to evaluate residual stresses in butted-welded joint. Considering this initial residual stresses, local stress and strain at the critical location (weld toe) during the loading were analyzed by elastic plastic finite element analysis. Fatigue crack initiation life and fatigue crack propagation life of butt-welded specimen were predicted by local strain approach and Neuber's role and Paris law. It is demonstrated that fatigue life estimates by local strain approach closely approximate the experimental results.

  • PDF

Strain interaction of steel stirrup and EB-FRP web strip in shear-strengthened semi-deep concrete beams

  • Javad Mokari Rahmdel;Erfan Shafei
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.383-393
    • /
    • 2023
  • Conventional reinforced concrete design codes assume ideal strain evolution in semi-deep beams with externally bonded fiber-reinforced polymer (EB-FRP) web strips. However, there is a strain interaction between internal stirrups and web strips, leading to a notable difference between code-based and experimental shear strengths. Current study provides an experiment-verified detailed numerical framework to assess the potential strain interaction under quasi-static monotonic load. Based on the observations, steel stirrups are effective only for low EB-FRP amounts and the over-strengthening of semi-deep beams prevents the stirrups from yielding, reducing its shear strength contribution. A notable difference is detected between the code-based and the study-based EB-FRP strain values, which is a function of the normalized FRP stress parameter. Semi-analytical relations are proposed to estimate the effective strain and stress of the components considering the potential strain interaction. For the sake of simplification, a linearized correction factor is proposed for the EB-FRP web strip strain, assuming its restraining effect as constant for all steel stirrup amounts.

Effect of hysteretic constitutive models on elasto-plastic seismic performance evaluation of steel arch bridges

  • Wang, Tong;Xie, Xu;Shen, Chi;Tang, Zhanzhan
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1089-1109
    • /
    • 2016
  • Modified two-surface model (M2SM) is one of the steel elasto-plastic hysteretic constitutive models that consider both analysis accuracy and efficiency. However, when M2SM is used for complex strain history, sometimes the results are irrational due to the limitation of stress-strain path judgment. In this paper, the defect of M2SM was re-modified by improving the judgment of stress-strain paths. The accuracy and applicability of the improved method were verified on both material and structural level. Based on this improvement, the nonlinear time-history analysis was carried out for a deck-through steel arch bridge with a 200 m-long span under the ground motions of Chi-Chi earthquake and Niigata earthquake. In the analysis, we compared the results obtained by hysteretic constitutive models of improved two-surface model (I2SM) presented in this paper, M2SM and the bilinear kinematic hardening model (BKHM). Results show that, although the analysis precision of displacement response of different steel hysteretic models differs little from each other, the stress-strain responses of the structure are affected by steel hysteretic models apparently. The difference between the stress-strain responses obtained by I2SM and M2SM cannot be neglected. In significantly damaged areas, BKHM gives smaller stress result and obviously different strain response compared with I2SM and M2SM, and tends to overestimate the effect of hysteretic energy dissipation. Moreover, at some position with severe damage, BKHM may underestimate the size of seismic damaged areas. Different steel hysteretic models also have influences on structural damage evaluation results based on deformation behavior and low cycle fatigue, and may lead to completely different judgment of failure, especially in severely damaged areas.

A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect (크기효과가 고려된 미소절삭시의 온도 및 응력특성에 관한 유한요소해석)

  • 김국원;이우영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.128-139
    • /
    • 1998
  • In this paper, a finite element method for predicting the temperature and stress distributions in micro-machining is presented. The work material is oxygen-free-high-conductivity copper(OFHC copper) and its flow stress is taken as a function of strain, strain rate and temperature in order to reflect realistic behavior in machining process. From the simulation, a lot of information on the micro-machining process can be obtained; cutting force, cutting temperature, chip shape, distributions of temperature and stress, etc. The calculated cutting force was found to agree with the experiment result with the consideration of friction characteristics on chip-tool contact region. Because of considering the tool edge radius, this cutting model using the finite element method can analyze the micro-machining with the very small depth of cut, almost the same size of tool edge radius, and can observe the 'size effect' characteristic. Also the effects of temperature and friction on micro-machining were investigated.

  • PDF

The effect of welding methods on the stress corrosion behavior of the welded austenitic stainless steel (오스테나이트 스테인리스강 용접부의 응력부식 거동에 미치는 용접 방법의 영향)

  • 백신영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.42-50
    • /
    • 1995
  • To study the effect of welding methods on the Stress Corrosion Cracking (SCC) behavior of welded AISI type 316L and 304 austenitic stainless steel, the Slow Strain Rate Technique(SSRT) has been adopted in the boiling 45 wt% $MgCl_2$ solution. The results are as follows. 1) Welded sections are more susceptible than base metal in SCC, and the rank of SCC, and the rasistance in welding method is TIG, MIG, $CO_2$ and ARC. 2) The Ultimate tensile strength(UTS) and the strain of both base metal and welded joint are reduced as decreasing extension rate. 3) The SCC resistance of 316L base metal and welded sections are superior than that of 304. 4) The tendency of pitting and the SCC suseptibility are agreed well, and the SCC site is welded deposit section in 316L whereas HAZ in 304.

  • PDF

Cracking Analysis of RC Tension Members Using Polynomial Strain Distribution Function (다항식 변형률 분포함수를 이용한 철근콘크리트 인장부재의 균열해석)

  • 곽효경;송종영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.267-274
    • /
    • 2001
  • In this paper, a analytical model which can simulate the post-cracking behavior and tension stiffening effect in a reinforced concrete(RC) tension member is proposed. Unlike the classical approaches using the bond stress-slip relationship or the assumed bond stress distribution, the tension stiffening effect at post-cracking stage is quantified on the basis of polynomial strain distribution functions of steel and concrete, and its contribution is implemented into the reinforcing steel. The introduced model can be effectively used in constructing the stress-strain curve of concrete at post-cracking stage, and the loads carried by concrete and by reinforcing steel along the member axis can be directly evaluated on the basis of the introduced model. In advance, the prediction of cracking loads and elongations of reinforced steel using the introduced model shows good agreements with results from previous analytical studies and experimental data.

  • PDF

Low cycle fatigue and ratcheting failure behavior of AH32 steel under uniaxial cyclic loading

  • Dong, Qin;Yang, Ping;Xu, Geng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.671-678
    • /
    • 2019
  • In this paper, the low cycle fatigue failure and ratcheting behavior, as well as their interaction of AH32 steel were experimentally investigated under uniaxial cyclic loading. The effects of mean stress, stress amplitude and stress ratio on the low cycle fatigue life and ratcheting strain were discussed. It was found that the ratcheting strain increased while the fatigue life decreased with the increase of mean stress and stress amplitude, and the increasing stress ratio would result in smaller ratcheting and larger fatigue life. Two kinds of failure modes, i.e. low cycle fatigue failure due to crack propagates and ratcheting failure due to large plastic strain will take place respectively. Based on the experimental results, considered the effect of ratcheting on fatigue life, a model with the maximum stress and ratcheting strain rate was proposed. Comparison with the experimental result showed that the new model provided a good prediction for AH32 steel.