• 제목/요약/키워드: Strengthening shear

검색결과 376건 처리시간 0.024초

Damping characteristics of CFRP strengthened castellated beams

  • Cyril Thomas Antony Raj;Jyothis Paul Elanhikuzhy;Baskar Kaliyamoorthy
    • Steel and Composite Structures
    • /
    • 제49권6호
    • /
    • pp.685-699
    • /
    • 2023
  • In recent years, Carbon Fibre Reinforced Plastic (CFRP) strengthening is found to be one of the best methods to strengthen steel structures. The fibrous bond can also influence the vibration characteristics of the strengthened element apart from its static strength enhancement property. The main objective of this study is to understand the influence of CFRP strengthening on the dynamic Behaviour of Thin-Webbed Castellated Beams (TWCBs). A detailed experimental investigation was carried out on five sets of beams with varying parameters such as domination of shear (Shear Dominant, Moment Dominant and Moment and Shear Dominant), sectional classification (Plastic and Semi-compact) and perforation geometries (ho/dwratio 0.65 and e/ho ratio 0.3). Free vibration analysis was carried out by exciting the simply supported TWCBs with an impact force generated by a ball dropped from a specific height. Logarithmic decrement method was used to obtain the damping ratio and natural frequencies of vibration were found by Fast Fourier Transform (FFT). Natural frequency showed an increase in a range of 10.5 - 55% for the different sets of castellated beams. An increase of 62.30% was noted in the damping ratio of TWCBs after strengthening which is an indication of improvement in the vibration characteristics of the beam.

농어촌 지역 RC건축물 보의 철판망 보강에 관한 실험 연구 (An Experimental Study on Beam Strengthening of RC Buildings with Expanded Steel Plates in Rural Area)

  • 김윤일;홍시헌
    • 한국농촌건축학회논문집
    • /
    • 제7권1호
    • /
    • pp.121-128
    • /
    • 2005
  • This experimental study was conducted to investigate beam strengthening of RC buildings with expended steel plate(ESP) in rural area. Nine test specimens were manufactured, whose variables were tensile steel ratio and the amount and the shape of expanded steel plate. The test results indicated that strengthened beams with ESP showed the improvement of flexural strength of 50%~90%, and the beam strengthening of U type was excellent for shear reinforcement as well as flexural reinforcement, more over, the honeycomb shape of ESP and anchor bolts for development of ESP were very effective.

  • PDF

Rehabilitation and strengthening of exterior RC beam-column connections using epoxy resin injection and FRP sheet wrapping: Experimental study

  • Marthong, Comingstarful
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.723-736
    • /
    • 2019
  • The efficacy of a technique for the rehabilitation and strengthening of RC beam-column connections damaged due to cyclic loading was investigated. The repair mainly uses epoxy resin infused under pressure into the damaged region to retrieved back the lost capacity and then strengthening using fiber reinforced polymer (FRP) sheets for capacity enhancement. Three common types of reduced scale RC exterior beam-column connections namely (a) beam-column connection with beam weak in flexure (BWF) (b) beam-column connections with beam weak in shear (BWS) and (c) beam-column connections with column weak in shear (CWS) subjected to reversed cyclic loading were considered for the experimental investigation. The rehabilitated and strengthened specimens were also subjected to similar cyclic displacement. Important parameters related to seismic capacity such as strength, stiffness degradation, energy dissipation, and ductility were evaluated. The rehabilitated connections exhibited equal or better performance and hence the adopted rehabilitation strategies could be considered as satisfactory. Confinement of damaged region using FRP sheet significantly enhanced the seismic capacity of the connections.

Optimum amount of CFRP for strengthening shear deficient reinforced concrete beams

  • Gemi, Lokman;Alsdudi, Mohammed;Aksoylu, Ceyhun;Yazman, Sakir;Ozkilic, Yasin Onuralp;Arslan, Musa Hakan
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.735-757
    • /
    • 2022
  • The behavior of shear deficient under-balanced reinforced concrete beams with rectangular cross-sections, which were externally strengthened with CFRP composite along shear spans, was experimentally investigated under vertical load. One of the specimens represents a reference beam without CFRP strengthening and the other specimens have different width/strip spacing ratios (wf/sf). The optimum strip in terms of wf/sf, which will bring the beam behavior to the ideal level in terms of strength and ductility, was determined according to the regulations. When the wf/sf ratio exceeds 0.55, the behavior of the beam shifted from shear failure to bending failure. However, it has been observed that the wf/sf ratio should be increased up to 0.82 in order for the beam to reach sufficient shear reserve value according to the codes. It is also observed that the direction and weight of the CFRP composite are one of the most critical factors and 240 gr/m2 CFRP strips experienced sudden ruptures in the shear span after the cracking of the concrete. It is considered as a deficiency that the empirical shear capacity formulas given for the beams reinforced with CFRP in the regulations do not take into account both direction and weight of CFRP composites.

Shear strengthening of seawater sea-sand concrete beams containing no shear reinforcement using NSM aluminum alloy bars

  • Yasin Onuralp Ozkilic;Emrah Madenci;Ahmed Badr;Walid Mansour;Sabry Fayed
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.153-172
    • /
    • 2024
  • Due to the fast development of constructions in recent years, there has been a rapid consumption of fresh water and river sand. In the production of concrete, alternatives such as sea water and sea sand are available. The near surface mounted (NSM) technique is one of the most important methods of strengthening. Aluminum alloy (AA) bars are non-rusting and suitable for usage with sea water and sand concrete (SSC). The goal of this study was to enhance the shear behaviour of SSC-beams strengthened with NSM AA bars. Twenty-four RC beams were cast from fresh water river sand concrete (FRC) and SSC before being tested in four-point flexure. All beams are the same size and have the same internal reinforcement. The major factors are the concrete type (FRC or SSC), the concrete degree (C25 or C50 with compressive strength = 25 and 50 MPa, respectively), the presence of AA bars for strengthening, the direction of AA bar reinforcement (vertical or diagonal), and the AA bar ratio (0, 0.5, 1, 1.25 and 2 %). The beams' failure mechanism, load-displacement response, ultimate capacity, and ductility were investigated. Maximum load and ductility of C25-FRC-specimens with vertical and diagonal AA bar ratios (1%) were 100,174 % and 140, 205.5 % greater, respectively, than a matching control specimen. The ultimate load and ductility of all SSC-beams were 16-28 % and 11.3-87 % greater, respectively, for different AA bar methods than that of FRC-beams. The ultimate load and ductility of C25-SSC-beams vertically strengthened with AA bar ratios were 66.7-172.7 % and 89.6-267.9 % higher than the unstrengthened beam, respectively. When compared to unstrengthened beams, the ultimate load and ductility of C50-SSC-beams vertically reinforced with AA bar ratios rose by 50-120 % and 45.4-336.1 %, respectively. National code proposed formulae were utilized to determine the theoretical load of tested beams and compared to matching experimental results. The predicted theoretical loads were found to be close to the experimental values.

Analytical analysis of the interfacial shear stress in RC beams strengthened with prestressed exponentially-varying properties plate

  • Rabia, Benferhat;Abderezak, Rabahi;Daouadji, Tahar Hassaine;Abbes, Boussad;Belkacem, Adim;Abbes, Fazilay
    • Advances in materials Research
    • /
    • 제7권1호
    • /
    • pp.29-44
    • /
    • 2018
  • In this paper, a closed-form rigorous solution for interfacial shear stress in simply supported beams strengthened with bonded prestressed E-FGM plates and subjected to an arbitrarily positioned single point load, or two symmetric point loads is developed using linear elastic theory. This improved solution is intended for application to beams made of all kinds of materials bonded with a thin plate, while all existing solutions have been developed focusing on the strengthening of reinforced concrete beams, which allowed the omission of certain terms. The theoretical predictions are compared with other existing solutions. Finally, numerical results from the present analysis are presented to study the effects of various parameters of the beams on the distributions of the interfacial shear stresses. The results of this study indicated that the E-FGM plate strengthening systems are effective in enhancing flexural behavior of the strengthened RC beams.

Shear strengthening effect by bonded GFRP strips and transverse steel on RC T-beams

  • Panda, K.C.;Bhattacharyya, S.K.;Barai, S.V.
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.75-98
    • /
    • 2013
  • This study focuses on shear strengthening performance of simply supported reinforced concrete (RC) T-beams bonded by glass fibre reinforced polymer (GFRP) strips in different configuration, orientations and transverse steel reinforcement in different spacing. Eighteen RC T-beams of 2.5 m span are tested. Nine beams are used as control beam. The stirrups are provided in three different spacing such as without stirrups and with stirrups at a spacing of 200 mm and 300 mm. Another nine beams are used as strengthened beams. GFRP strips are bonded in shear zone in U-shape and side shape with two types of orientation of the strip at $45^{\circ}$ and $90^{\circ}$ to the longitudinal axis of the beam for each type of stirrup spacing. The experimental result indicates that the beam strengthened with GFRP strips at $45^{\circ}$ orientation to the longitudinal axis of the beam are much more effective than $90^{\circ}$ orientation. Also as transverse steel increases, the effectiveness of the GFRP strips decreases.

Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands

  • Lee, Sojeong;Im, Jooyoung;Cho, Gye-Chun;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • 제17권5호
    • /
    • pp.445-452
    • /
    • 2019
  • Gel-type biopolymers have recently been introduced as environmentally friendly soil binders and have shown substantial strengthening effects in laboratory experimental programs. Although the strengthening effects of biopolymer-treated sands have been verified in previous direct shear tests and uniaxial compression tests, there has been no attempt to examine shear behavior under different confining stress conditions. This study therefore aimed to investigate the strengthening effects of biopolymer-treated sand using laboratory triaxial testing with a focus on confining pressures. Three representative confining pressure conditions (${\sigma}_3=50kPa$, 100 kPa, and 200 kPa) were tested with varying biopolymer contents ($m_{bp}/m_s$) of 0.5%, 1.0%, and 2.0%, respectively. Based on previous studies, it was assumed that biopolymer-treated sand is susceptible to hydraulic conditions, and therefore, the experiments were conducted in both a hydrated xanthan gum condition and a dehydrated xanthan gum condition. The results indicated that the shear resistance was substantially enhanced and there was a demonstrable increase in cohesion as well as the friction angle when the biopolymer film matrix was comprehensively developed. Accordingly, it can be concluded that the feasibility of the biopolymer treatment will remain valid under the confining pressure conditions used in this study because the resisting force of the biopolymer-treated soil was higher than that in the untreated condition, regardless of the confining pressure.

손상입은 철근콘크리트 보의 포스트텐셔닝 강봉을 이용한 전단 보강 (Shear Strengthening by Externally Post-tensioning Steel Rods in Damaged Reinforced Concrete (RC) Beams)

  • 이수헌;이희두;박성근;신경재
    • 대한건축학회논문집:구조계
    • /
    • 제34권1호
    • /
    • pp.3-10
    • /
    • 2018
  • This experimental investigation was conducted to observe the shear strengthening behavior of pre-damaged reinforced concrete (RC) beams strengthened with externally post-tensioning steel rods. A total of six simply supported beams - two control beams and four post-tensioned beams using external steel rods - were tested to failure in shear. The external steel rods of 18 mm or 28 mm diameter were respectively employed as post-tensioning material. The four post-tensioned beams have a V-shaped profile with a deviator (or saddle pin) located at mid-span, and the post-tensioning system increased the low load-carrying capacity and overcame a little bit of deflection caused by damage. Concretely, the load-carrying capacity and flexural stiffness were respectively increased by about 25~57% and 263~387% due to the post-tensioning when compared with the unstrengthened control beams.

A piecewise linear transverse shear transfer model for bolted side-plated beams

  • Li, Ling-Zhi;Jiang, Chang-Jiu;Su, Ray Kai-Leung;Lo, Sai-Huen
    • Structural Engineering and Mechanics
    • /
    • 제62권4호
    • /
    • pp.443-453
    • /
    • 2017
  • The performance of bolted side-plated (BSP) beams is affected by the degree of transverse partial interaction, which is a result of the interfacial slip caused by transverse shear transfer between the bolted steel plates and the reinforced concrete beams. However, explicit formulae for the transverse shear transfer profile have yet to be derived. In this paper, a simplified piecewise linear shear transfer model was proposed based on force superposition principle and simplification of shear transfer profiles derived from a previous numerical study. The magnitude of shear transfer was determined by force equilibrium and displacement compatibility condition. A set of design formulae for BSP beams under several basic load cases was also derived. Then the model was verified by test results. A worked example was also provided to illustrate the application of the proposed design formulae. This paper sheds some light on the shear force transfer mechanism of anchor bolts in BSP beams, and offers a practical method to evaluate the influence of transverse partial interaction in strengthening design.