• 제목/요약/키워드: Strengthening shear

검색결과 376건 처리시간 0.021초

탄소섬유시트의 단부정착방법에 따른 철근콘크리트보의 휨 보강 효과에 대한 실험적 연구 (Experimental Study about Flexural Strengthening Effects According to evelopment Method of Carbon Fiber Sheet for Reinforced Concrete Beam)

  • 원치문
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권4호
    • /
    • pp.119-126
    • /
    • 2006
  • 본 논문에서는 철근콘크리트 보에 탄소섬유시트를 부착했을 때와 부착 후 전단철근에 정착했을 때 발생하는 휨 보강 효과에 대한 연구결과를 제시한다. 이를 위해 총 6 개의 $150mm{\times}250mm{\times}2000mm$ 크기의 철근콘크리트 보 실험체를 제작하였다. 탄소섬유시트의 부착과 정착 위치에 따라 보의 휨강도 보강효과를 연구하였고 이로부터 전단철근에 탄소섬유시트를 정착했을 때 보의 휨강도가 현저하게 증가한다는 것을 알 수 있었다. 또한 여러 가지 정착위치 중에서 다정착 시트가 가장 효과적인 보강효과를 나타내었고 무보강 보 실험체에 비해 53%의 휨강도 증진효과를 나타내었다.

Retrofitting by adhesive bonding steel plates to the sides of R.C. beams. Part 2: Debonding of plates due to shear and design rules

  • Oehlers, Deric. J.;Nguyen, Ninh T.;Bradford, Mark A.
    • Structural Engineering and Mechanics
    • /
    • 제9권5호
    • /
    • pp.505-518
    • /
    • 2000
  • A major cause of premature debonding of tension face plates is shear peeling (Jones et al. 1988, Swamy et al. 1989, Ziraba et al. 1994, Zhang et al. 1995), that is debonding at the plate ends that is associated with the formation of shear diagonal cracks that are caused by the action of vertical shear forces. It is shown in this paper how side plated beams are less prone to shear peeling than tension face plated beams, as the side plate automatically increases the resistance of the reinforced concrete beam to shear peeling. Tests are used to determine the increase in the shear peeling resistance that the side plates provide, and also the effect of vertical shear forces on the pure flexural peeling strength that was determined in the companion paper. Design rules are then developed to prevent premature debonding of the plate ends due to peeling and they are applied to the strengthening and stiffening of continuous reinforced concrete beams. It is shown how these design rules for side plated beams can be adapted to allow for propped and unpropped construction and the time effects of creep and shrinkage, and how side plates can be used in conjunction with tension face plates.

Plate로 전면보강된 교량 상판의 거동특성에 관한 연구 (A Study on the Structural Characteristic of Strengthened Bridge Deck Specimens Using External Bonded Plate)

  • 심종성;오홍섭;김언경
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.163-168
    • /
    • 2001
  • Punching shear in concrete slabs is a serious problem in certain structural systems, such as flat slab. In this study, mechanical improvement between specimens which are unstrengthened and strengthened with steel plate and fiber panel is experimentally investigated. The strengthened bridge deck specimens had increment of strength and broke down with punching shear failure. Strengthening ratio should be considered to restraint punching failure.

  • PDF

고강도 RC 기둥의 전단능력 증진을 위한 강섬유 보강 (Steel Fiber Reinforcement for Shear Capacity Enhancement of High Strength RC Columns)

  • 장극관;이현호;문상덕
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.469-474
    • /
    • 2002
  • This study was to define the strengthening effect of steel fibers in high strength RC columns. For this, ten specimens of columns were tested under cyclic lateral load and constant axial load. The testing parameters are steel fiber volume fraction of concrete and shear reinforcement ratio of hoop bars. Finally, the optimal content of steel fibers was evaluated as 1.0 - 1.5 % volume fraction of concrete.

  • PDF

유리섬유보강 RC보의 휨 및 전단 피로성능개선의 실험 연구 (Experimental Study on the Fatigue Enhancement of RC Beams with Glassfibers)

  • 조창백;양정비;정영수;김기봉
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.507-512
    • /
    • 1999
  • In recent years, glassfibers have been used for strengthening in RC structure because of low material cost and easy repairing work. The purpose of this study is to experimentally and analytically investigate the effect of glassfibers for enhancing the capacity of RC flexural beams and shear beams. The experimental result shows that yield and ultimate strength of RC flexural beam with glassfibers are increased by approxiamate 13% and 26%, comparing with those for without glassfibers, and also ultimate strength of RC shear beam with glassfibers are increased by 34%, comparing with those for without glassfibers.

  • PDF

Performance-based framework for soil-structure systems using simplified rocking foundation models

  • Smith-Pardo, J. Paul
    • Structural Engineering and Mechanics
    • /
    • 제40권6호
    • /
    • pp.763-782
    • /
    • 2011
  • Results from nonlinear time-history analyses of wall-frame structural models indicate that the condition of vulnerable foundations -for which uplifting and reaching the bearing capacity of the supporting soil can occur before yielding at the base of the shear walls- may not be necessarily detrimental to the drift response of buildings under strong ground motions. Analyses also show that a soil-foundation system can inherently have deformation capacity well in excess of the demand and thus act as a source of energy dissipation that protects the structural integrity of the shear walls.

앵커볼트 체결 Slit형 강판 보강 RC보의 전단거동에 관한 실험적 연구 (An Experimental Study on the Shear Behavior of Reinforced Concrete Beams Strengthened by Slit Type Steel Plates with Anchor Bolt)

  • 이춘호;정우동;심종석
    • 콘크리트학회논문집
    • /
    • 제22권5호
    • /
    • pp.703-710
    • /
    • 2010
  • 기존 구조물에서 RC보는 여러 가지 이유로 불충분한 전단에 대한 문제에 직면하게 된다. 전단내력이 부족한 RC보의 전단 보강방법으로 강판이 널리 사용되고 있다. 본 연구에서는 앵커볼트가 체결된 경사, 수직 슬릿형 강판의 표면부착에 의해 전단보강된 RC보에 대한 실험을 하였으며, 여러 형태의 앵커볼트 체결 슬릿형 강판으로 보강된 RC보에 대한 전단보강효과, 파괴모드 및 전단내력을 평가하는 것을 연구의 목적으로 하였다. 실험의 변수는 앵커볼트가 부착된 슬릿의 폭, 간격, 경사각 및 수직 길이로 하였다. 연구 결과, 에폭시 부착과 볼트 체결로 보강된 슬릿형 강판 실험체의 파괴 유형은 최대하중 시 전단파괴 모드로 나타났다. 휨균열은 보의 인장측에서 최초로 발생하였으며, 경사 균열은 전단스팬에서 발생하였다. 최종적으로 에폭시 부착과 볼트 체결로 보강된 슬릿형 강판에서의 급격한 박리현상은 지연되었으며, RC보의 본체로부터 완전하게 분리 되지는 않음을 알 수 있었다.

Modelling the reinforced concrete beams strengthened with GFRP against shear crack

  • Kaya, Mustafa;Yaman, Canberk
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.127-137
    • /
    • 2018
  • In this study, the behavior of the number of anchorage bolts on the glass-fiber reinforced polymer (GFRP) plates adhered to the surfaces of reinforcing concrete (RC) T-beams was investigated analytically. The analytical results were compared to the test results in term of shear strength, and midpoint displacement of the beam. The modelling of the beams was conducted in ABAQUS/CAE finite element software. The Concrete Damaged Plasticity (CDP) model was used for concrete material modeling, and Classical Metal Plasticity (CMP) model was used for reinforcement material modelling. Model-1 was the reference specimen with enough sufficient shear reinforcement, and Model-2 was the reference specimen having low shear reinforcement. Model-3, Model-4 and Model-5 were the specimens with lower shear reinforcement. These models consist of a single variable which was the number of anchorage bolts implemented to the GFRP plates. The anchorage bolts of 2, 3, and 4 were mutually mounted on each GFRP plates through the beam surfaces for Model-3, Model-4, and Model-5, respectively. It was found that Model-1, Model-3, Model-4 and Model-5 provided results approximately equal to the test results. The results show that the shear strength of the beams increased with increasing of anchorage numbers. While close results were obtained for Model-1, Model-3, Model-4 and Model-5, in Model-2, the rate of increase of displacement was higher than the increase of load rate. It was seen, finite element based ABAQUS program is inadequate in the modeling of the reinforced concrete specimens under shear force.

Behavioral trends of shear strengthened reinforced concrete beams with externally bonded fiber-reinforced polymer

  • Barakat, Samer;Al-Toubat, Salah;Leblouba, Moussa;Burai, Eman Al
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.579-589
    • /
    • 2019
  • Numerous experimental studies have been conducted on reinforced concrete (RC) beams strengthened in shear with externally bonded fiber reinforced polymer (EBFRP). The objectives of this work are to study the behavioral trends of shear strengthened EBFRP RC beams after updating the existing database. The previously published databases have been updated, enriched and cross checked for completeness, redundancy and consistency. The updated database now contains data on 698 EBFRP beams and covers the time span from 1992 to 2018. The collected database then refined applying certain filters and used to investigate and capture better interactions among various influencing parameters affecting the shear strength of EBFRP beams. These parameters include the type and properties of FRP, fiber orientation as well as the strengthening scheme, the shear and the longitudinal steel reinforcement ratios, the shear span ratio, and the geometry of the member. The refined database is used to test the prediction accuracy of the existing design models. Considerable scatters are found in the results of all tested prediction models and in many occasions the predictions are unsafe. To better understand the shear behavior of the EBFRP RC beams and then enhance the prediction models, it was concluded that focused experimental programs should be carried out.

FRP Rod를 이용한 표면매립 및 단면 확대 복합 보수$\cdot$보강 공법 (Repair and Strengthening Method Using Near Surface Mounted FRP Rods and Overlay)

  • 황금식;박찬기;원종필
    • Composites Research
    • /
    • 제18권4호
    • /
    • pp.66-74
    • /
    • 2005
  • This paper reports new repair and strengthening mathod using improved material. This mathod have two type according to covering thickness of reinforcement. One type is near surface mounted FRP rod. Anther type is overay. Fiber Reinforced Plastic (FRP) materials has become very popular in recent years. FRP material used to rehabilitate many types of structures with superior characteristics such as high strength and stiffness and corrosion resistance. This strengthening mathod were used FRP rod which have better bond and shear strangth than current FRP rod. Development of FRP rod due to 3-D winding system. In addition, Ductile hybrid FRP has a certain plastic deformation and an elongation greater than 3% at maximum load is usually required for steel reinforcement in concrete structures. Moerover this mathod can be effective repair of base concrete by sprayed polymer mortar.