• Title/Summary/Keyword: Strength ratio

Search Result 7,525, Processing Time 0.037 seconds

A Fundamental Study on the Load Resistance Characteristics of Revetment Concrete Block with Recycled Concrete Aggregate and GFRP Rebar (순환골재와 GFRP 보강근을 적용한 호안블럭의 하중저항특성에 관한 연구)

  • Kim, Yongjae;Kim, Jongho;Moon, Doyoung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.42-51
    • /
    • 2022
  • Aggregate resources in Korea are expected to run out owing to an increase in development demand and construction investment. Recycled concrete aggregates (RCA), extracted from waste concrete, have a lower quality than natural aggregates. However, RCA can produce concrete similar in quality to the normal concrete by aggregate pretreatment, use of admixtures, and quality control. RCA are most suitable for use in precast concrete products such as sidewalk blocks and revetment blocks. Herein, the feasibility of producing revetment blocks using recycled aggregate concrete (RAC), similar in quality to normal concrete, was analyzed. The amount of RCA was varied, and moderate high early strength cement and steam curing were used to produce the concrete test blocks. In the block test, the load resistance characteristics of the blocks were evaluated to determine optimal RAC and glass fiber reinforced polymer (GFRP) rebar compositions. Thus, the variable that reduced the cement content was determined at the same level as that of natural aggregate concrete by the control of steam curing. In the concrete block test, although this depends on the reinforcement ratio, the RAC block exhibited the same or better performance than a normal concrete block. Therefore, the low quality of RCA in RAC is no longer a problem when concrete mixing and curing are controlled and appropriate reinforcement is used.

Optimization of Briquette Manufacturing Conditions Using Steel Sludge (제강슬러지를 이용한 브리켓 제조 조건 최적화 연구)

  • Lee, Dong Soo;Chae, Hui Gwon;Park, Tae Jun
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.12-18
    • /
    • 2022
  • Korea depends on the import of raw materials such as iron ore and coal for the steel industry. These raw materials have a major impact on the cost, productivity, and quality competitiveness in the global steel industry. To secure the competitiveness of steel companies, it is necessary to reduce the country's dependence on raw materials. This can be achieved using byproducts with a high Fe content, which are primarily generated by the steel industry. These byproducts are available in the form of a very fine powder, which can disperse as dust when used directly in plant processes. Dust dispersion has a negative impact on the environment and can lead to the loss of raw materials. To enable the use of a wide range of Fe-containing byproducts, it is necessary to pretreat them in the form of larger aggregates such as pellets and briquettes. There are several methods to achieve such aggregates. There are two ways to produce briquettes: using a hot briquette, which supplies additional heat to produce briquettes, or using a cold briquette, which does not use heat. A method for producing cold briquettes using Fe-containing byproducts was investigated in this study. The yield ratio and briquette strength were examined under various manufacturing conditions.

Quality of Dry Cement Mortar for Floor Heating Depending on Water-to-Dry Mortar Rutio (난방을 위한 바닥용 건조 시멘트 모르타르의 혼합수량비 변화에 따른 품질 특성)

  • Park, Sang-Jun;Hwang, Yin-Seong;Lee, Gun-Cheol;Kim, Jong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.3
    • /
    • pp.181-188
    • /
    • 2021
  • In this study, the various performance of dry cement mortar for Korean floor heating system depending on water-to-dry mortar ratios (W/DM) applied in project site was evaluated. According to the experiment conducted, the importance of mixing water for dry cement mortar was revealed by resultant performance or quality of the dry cement mortar for floor finishing by changing W/DM controlled in project site by workers. As the general trend, the flow was increased, and the unit volume weight was decreased with increasing W/DM. Additionally, compressive strength and drying shrinkage were significantly influenced by W/DM. Hence, it can be stated that the adding water for dry cement mortar should be managed precisely since excessively increased W/DM for workability improvement can cause performance degradation of floor mortar with the failures such as excessive bleeding, and severe segregation during the fresh state. As a summary of the study, to achieve a desirable performance of dry cement mortar, approximately 20 % of W/DM can be suggested to be managed in project site.

Effect of γ-Aminobutyric Acid and Probiotics on the Performance, Egg Quality and Blood Parameter of Laying Hens Parent Stock in Summer (γ-Aminobutyric Acid 및 생균제 급여가 여름철 산란 종계의 생산성, 계란 품질 및 혈액 성상에 미치는 영향)

  • Ji Heon, Kim;Yoo Don, Ko;Ha Guyn, Sung
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.239-246
    • /
    • 2022
  • This study was conducted to investigate the effects of dietary γ-aminobutyric acid (GABA) and a probiotic mixture on egg production and quality, blood parameters, and stress levels (corticosterone) in Hy-Line parent stock during summer in Korea. A total of 105 Hy-Line parent stock aged 24 weeks were randomly divided into three groups, each containing thirty-five birds: control, γ-aminobutyric acid (GABA), and probiotics (1 × 108/g Bacillus licheniformis, 1 × 107/g Lactobacillus plantarum, and 1 × 107/g Corynebacterium butyricum). The hens were fed a diet containing 50 ppm GABA or 0.1% probiotics for 6 weeks. Compared with the control group, the hen-day egg production, egg mass, and feed conversion ratio over the total period were significantly higher in the probiotic group (P<0.05). In contrast no significant differences were detected among groups with respect to egg weight, albumen height, Haugh units, yolk color, shell thickness or shell strength. Similarly, no significant difference were observed among groups with regards to biochemical profile (total cholesterol, triglyceride, glucose, total protein, aspartate aminotransferase, alanine aminotransferase, albumin, and inorganic phosphorus). However, compared with the control group, we did detect significant reductions in corticosterone levels in the GABA and probiotics groups (P<0.05). On the basis of our findings in this study, it would appear that dietary GABA and probiotics can alleviate heat stress in Hy-Line parent stock, with probiotics in particular being found to promote significant improvements in the hen-day egg production, egg mass, and feed conversion of laying hens during the summer season in Korea.

Polyacrylonitrile based Copolymer Synthesis and Precursor Fiber Spinning for Manufacturing High-performance Carbon Fiber (고성능 탄소섬유 제조를 위한 폴리아크릴로니트릴 기반 공중합 고분자 합성 및 전구체 섬유 방사)

  • Ju, Hyejin;Han, Minjung;Song, Kyunghyun;Jeon, Changbeom;Jeong, Hwakyung;Kim, Min Jeong;Chae, Han Gi
    • Composites Research
    • /
    • v.35 no.2
    • /
    • pp.115-119
    • /
    • 2022
  • The performance of carbon fiber is important for the production of these high-quality polymer composite materials such as CFRP (Carbon Fiber Reinforced Plastic). For this purpose, it is essential to use an optimized spinning process for improving the mechanical, physical, and structural properties of the precursor fiber, which greatly affects the properties of the carbon fiber, and the use of a suitable precursor polymer. In this study, the content of MAA (Methacrylic Acid), MAA injection time, and concentration of AIBN (2,2'-Azobis(2-methylpropionitrile)) were set as parameters for the polymer synthesis process, and Poly(AN-co-MAA) (poly(acrylonitrile-co-methacrylic acid)) was polymerized by solution polymerization. Poly(AN-co-MAA) with a molecular weight of 305,138 g/mol and an MAA ratio of 4.2% was dissolved in DMF (N,N-dimethylformamide) at a concentration of 16.0 wt%, and then a precursor fiber was prepared through dry-jet-wet spinning. The precursor fiber had a tensile strength of ~1.06 GPa and a tensile modulus of ~22.01 GPa, and no voids and structural defects were observed on the fiber.

Recommended levels of calcium and non-phytate phosphorus for yellow-feathered broilers (finisher phase)

  • Wang, Yibing;Wang, Weiwei;Zhang, Sheng;Jiang, Shouqun
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1940-1947
    • /
    • 2022
  • Objective: This study examined the effects of dietary calcium (Ca) and non-phytate phosphorus (NPP) on performance, tibial characteristics, meat quality and plasma biochemical variables in yellow-feathered broilers during 85 to 105 d of age. Methods: A total of 720 heads of 85-d broilers were allocated into 9 groups and provided with three levels of Ca (0.65%, 0.75%, 0.85%), and NPP (0.25%, 0.30%, 0.35%) in diets for 21 d. Results: The final body weight (FW), average daily gain (ADG), average daily feed intake (ADFI), and feed to gain ratio (F:G) were affected (p<0.05) by dietary Ca. From the quadratic regressions, the optimal level of Ca in diet were 0.71% for FW and ADG, and 0.67% for ADFI. Dietary Ca and NPP both significantly affected tibial breaking strength and density. From the quadratic regressions, the optimal level of Ca and NPP in diet were 0.81% and 0.37% for tibial density. The shear force of breast muscle of broilers given 0.75% or 0.85% Ca were lower than that in birds with 0.65% Ca and drip loss of birds given 0.65% or 0.75% Ca was lower than that in birds with 0.85% Ca (p<0.05). The drip loss of birds given 0.25% NPP was lowest among all NPP treatments (p<0.05). Calcium affected (p<0.05) the plasmal contents of phosphorus, osteocalcin (OC), parathyroid hormone (PTH) and calcitonin and the contents of OC and PTH were also influenced by dietary NPP. Conclusion: Dietary Ca and NPP level affected tibial characteristics, meat quality and biochemical variables in plasma of finisher-phase yellow-feathered broilers (85 to 105 d) and Ca also affected growth performance. Dietary 0.71% Ca and 0.30% NPP were enough for growth performance, while considering the growth performance, tibial characteristics, meat quality and biochemical variables together, 0.75% Ca and 0.37% NPP were recommended.

The Effect of Pilates Mat Exercise on Cardiovascular Disease Risk Factors and Inflammation Markers in Sarcopenic Obesity Elderly (필라테스 매트운동이 근위축 비만 노인의 심혈관질환 위험요인과 염증반응지표에 미치는 영향)

  • Kim, Hyun-Tae;Kim, Nam-Jung
    • 한국체육학회지인문사회과학편
    • /
    • v.51 no.4
    • /
    • pp.407-417
    • /
    • 2012
  • The purpose of the study was to determine the effects of pilates mat exercise on cardiovascular disease risk factors and inflammation markers in sarcopenic obesity elderly. All subjects were sarcopenic obesity(height for each of the arms, legs, appendicular muscle mass ratio of 1.16kg/m2, 4.31kg/m2, 5.21kg/m2 under and % body fat is more than 30%) elderly performed the pilates mat exercise during 12-week for 60 minutes 3 times a weeks. All subjects of this study were examined the changes in cardiovascular disease risk factors(TC, TG, HDL-C, LDL-C, Glucose, Insulin) and inflammation markers(fibrinogen, adiponectin, leptin, CRP). The results of the study in the exercise group were as follows; The weight, % body fat, TC, TG, LDL-C, fibrinogen, CRP had significantly decreased and muscle mass, HDL-C, adiponectin had significantly increased. And also, pilates mat exercise can effective to improve sarcopenic obesity, and pilates mat exercises performed coy shrink obesity to cardiovascular disease and inflammatory response indicators of older women as old man's physical features of the deterioration of the prevention of obesity and muscle strength loss, causing the effective exercise method is meant to be.

Injection Characteristics Evaluation of Conductive Grout Material According to Carbon Fiber Mixing Ratio (탄소섬유 배합비에 따른 전도성 그라우트 재료의 주입특성평가)

  • Hyojun Choi;Wanjei Cho;Hyungseok Heo;Teawan Bang;Chanyoung Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The grouting method is a method of construction for the purpose of waterproofing and reinforcing soft ground. When grout is injected into the ground, there are various types of penetration and diffusion of grout depending on the shape of the ground, the size of soil, the porosity, and the presence or absence of groundwater. the current situation. Therefore, in this study, to investigate the penetration performance of the grouting to conductive material, laboratory tests were performed on the addition of the conductive material. In the injection test, 0%, 3%, and 5% of the mixed water were added as conductive materials to the grout, and the original ground condition was composed of various types of ground composed of gravel and silica sand. Conductive grout is injected by pressure into the model ground using a dedicated injection device, and the injection time (t), pressure (p), flow rate (v) and injection amount (q) are measured, and the hardened body injected in the model ground is collected. Penetration performance was evaluated. In the results of the grout injection experiment, the amount of conductive material used and the grout injection rate showed an inverse relationship, and it was confirmed that the penetration pattern was changed according to the size of the soil particles in the model ground. The grout containing the conductive material has relatively good penetration into the ground and excellent strength and durability of the hardened body, so it was judged that it could be used as an additive for measuring the penetration range of the grout.

Geotechnical Engineering Characteristics of Ulleung Basin Sediment, East Sea (동해, 울릉 분지 심해토의 지반공학특성)

  • Lee, Chang-Ho;Yun, Tae-Sup;J.C., Santamarina;Bahk, Jang-Jun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.17-29
    • /
    • 2009
  • There has been an increase in the investigation of deep sea sediments with a consequent increase in the amount of energy required to undertake these investigations. The geotechnical characteristics of Ulleung Basin sediment are explored by using depressurized specimens following methane production tests carried out on pressured core samples obtained at 2,100 m water depth and 110 m below sea floor. Geotechnical index tests, X-ray diffraction, and scanning electron microscope are conducted to identify the geotechnical index parameters, clay mineralogy, chemical composition, and microstructure of the sediments. Compressibility, and elastic and electromagnetic wave parameters are investigated for two samples by using a multi sensing instrumented oedometer cell. The strength chatracteristics are obtained by the direct shear tests. The dominant clay minerals are mostly kaolinite, illite, chlorite, and calcite. The SEM shows a well-developed flocculated structure of the microfossil. Void ratio, electrical resistivity, real permittivity, conductivity, and shear wave velocity show bi-linear behavior with the effective vertical stress: as the vertical effective stress increases. The friction angle obtained by the direct shear test is about $21^{\circ}$, which is similar to the value observed in the Ulleung Basin sediments. This study shows that the understanding of the behavior acting on the diatomaceous marine sediment is important because it often maintains the useful energy resources such as gas hydrate and so will be the new engineering field in the next generation.

Spatial distribution of heterotrophic bacteria and the role of microbial food web in the northern East China Sea in summer (하계 동중국해 북부해역에서 종속영양박테리아의 분포 특성 및 미생물 먹이망의 역할)

  • Bomina Kim;Seok-Hyun Youn
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.1
    • /
    • pp.89-100
    • /
    • 2023
  • We investigated the spatial distribution of heterotrophic bacteria associated with different water masses in the northern East China Sea(ECS) in summer. The surface water masses were divided into the Changjiang Diluted Water (CDW) and high salinity water (HSW). In the CDW region, the concentrations of dissolved inorganic nitrogen (DIN) and chlorophyll-a (Chl-a), and micro Chl-a contribution were high; and bacterial abundance (BA) and ciliate abundance (CA) were also high. In the HSW region with relatively low DIN concentrations, Chl-a concentration and micro Chl-a contribution were low, but pico Chl-a contribution was increased compared to those in the CDW region. BA did not show any significant difference from the CDW region, but CA was decreased. BA showed a positive correlation with Chl-a concentration in the CDW region; however, it did not show a significant correlation with Chl-a concentration in the HSW region. The ratio of bacterial carbon biomass/phytoplankton carbon biomass was exponentially increased with a decrease in the Chl-a concentration. Compared to the past (1990-2000s), the surface phosphate concentrations and the size of dominant phytoplankton have recently decreased in the ECS. Considering this trend of nutrient decrease and miniaturization of the phytoplankton, our results indicate that changes in the strength of the oligotrophic water mass could alter the function of the microbial food web.