• Title/Summary/Keyword: Strength performance of concrete

Search Result 2,949, Processing Time 0.031 seconds

An Experimental Study on the Corrosion Protection Method of Reinforcing Steel in Concrete by Using Corrosion Inhibitor (방청제에 의한 콘크리트 내의 철근 방식법에 관한 실험적 연구)

  • 배수호;정영수;권영우;김년산;권혁진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.710-713
    • /
    • 2000
  • The corrosion protection methods of reinforcing steel in concrete are the various methods such as increasing thickness of cover concrete, using of reinforcing bars coated with epoxy, dosage of corrosion inhibitor as concrete admixture, cathodic protection method and etc. The most economical method of them will be the corrosion protection method using corrosion inhibitor as concrete admixture. Therefore, the purpose of this research is to investigate the performance of corrosion protection of ordinary strength and high strength concrete using corrosion inhibitor, respectively. For this purpose, after manufacturing ordinary strength and high strength concrete with and without corrosion inhibitor, the accelerated corrosion tests for reinforcing steel were conducted according to the periodic cycles (140 day) of wetting ($65^{\circ}C$, 90% R.H.) and drying period ($15^{\circ}C$, 65% R.H.). As a result, th high strength concrete using corrosion inhibitor showed an excellent performance of corrosion protection.

  • PDF

A Study on Fire Resistance Performance Evaluation for Field Application of Ultra-High Strength Concrete (초고강도 내화 콘크리트의 현장 적용을 위한 내화성능 평가에 관한 연구)

  • Baek, Young-Woon;Yuk, Tae-Won;Park, Dong-Soo;Kim, Han-Sol;Lee, Hang-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.41-42
    • /
    • 2023
  • The physical performance of high-strength concrete deteriorates when exposed to high temperatures such as fire. In particular, in the case of ultra-high-strength concrete, there is a high possibility of explosion due to internal water pressure and thermal expansion due to the tight internal structure. In this paper, a fire resistance certification test was conducted for field application of ultra-high-strength fire-resistant concrete, and the fire resistance performance (temperature rise of main rebar) was compared according to the structural concrete cover thickness. As a result, when the covering thickness was 40 mm, three structures did not meet the certification standards, and when the covering thickness was 50 mm, all structures met the fire resistance certification standards.

  • PDF

An Experimental Study on the Seismic Performance of RC Piers using High-strength Concrete and High-strength Rebars (고강도콘크리트와 고강도철근을 사용한 교각의 내진거동 실험연구)

  • Oh Byung Hwan;Park Dae Gyun;Cho Keun Ho;Shin Yong Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.712-715
    • /
    • 2004
  • Five RC piers were tested under a constant axial load and a cyclically reversed horizontal load to investigate the behavior of RC piers used in the high-strength concrete and the high-strength rebars. Seismic design of piers were conducted under the same design, according to the current Korean Bridge Design Standard. The parameters of the test were concrete compressive strength and steel strength, steel ratio. The test results indicated that RC piers of the high-strength concrete and high-strength rebars exhibited ductile behavior and seismic performance.

  • PDF

Effect of Mixer on the Performance of Ultra-High Strength Steel Reinforced Concrete (초고강도 강섬유 보강 콘크리트의 성능에 미치는 믹서의 영향)

  • Park, Jung-Jun;Koh, Kyung-Taek;Ryu, Gum-Sung;Kang, Su-Tae;Kim, Sung-Wook;Han, Sang-Mook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.549-552
    • /
    • 2006
  • Generally the ultra-high strength steel reinforced concrete has rich mix composition composed of high-strength type mineral admixtures and as a result of very low water-binder ratio(about under w/b=25%), it reveals ultra-high compressive strength(about over 100Mpa). Also, in order to obtain sufficient toughness after construction, we usually mix a large quantity steel fiber with ultra-high strength steel reinforced concrete therefore we must use proper mixer for workability. When we make the ultra-high strength steel reinforced concrete we need more long mixing time or much super-plasticizer than when we manufacture normal concrete. These bring about economical problems and performance deterioration. Therefore, in this study, in order to manufacture easily ultra-high strength steel reinforced concrete we develope a dedicated mixer for ultra-high strength steel reinforced concrete with high speed type. It carried out the examination for comparison between the dedicated and general type mixer, the analysis and counterplan of the point at issue when we manufacture ultra-high strength steel reinforced concrete by the dedicated mixer.

  • PDF

Bond Strength of Reinforcing Steel to High-Performance Concrete Using Belite Cement (고성능 Belite 시멘트 콘크리트의 철근 부착성능)

  • Kim, Sang-Jun;Cho, Pil-Kyu;Hur, Jun;Choi, Oan-Chul
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.169-178
    • /
    • 1998
  • Bond strength of reinforcing bar to high-perfomance concrete using belite cement is explored using beam end test specimens. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete cover. The test results show that the specimens with belite cement concrete show approximately 10% higer bond strength than those with portland cement concrete. The results also show that the bond strength from the high strength concrete is function of the square root of concrete compressive strength. Bond strength of the top bar is less than bond strength of bottom bar, but the ratios of the bond strength of bottom-cast bars to those for top-cast bars are much less than the modification factor for top reinforcement found in the ACI 318-95 code. Comparisons with other reported tests identified that belite cement increased bond strength while silica fume or flyash used in high strength concrete decreased bond strength. The high-strength and high-slump concrete with belite cement performs well in terms of bond strength to reinforcing steel.

Analysis Strength Improvement on 50 to 80 MPa Level High Performance Concrete (50~80 MPa급 고성능 콘크리트의 강도증진해석)

  • Park, Byung-Kwan;Lee, Ju-Sun;Jang, Ki-Hyun;Choi, Young-Wha;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.93-96
    • /
    • 2008
  • This research performed strength improvement analysis after evaluating strength characteristics by estimated temperatures to evaluate the real time strength performance of 50 to 80 MPa high performance concrete equipped with heat resistance, and the results are as follows. The lesser W/B and the lesser target slump flow value difference, compression strength was shown to increase, and the more curing temperature becomes, the strength increased accordingly. According to the correlation review result of strength improvement analysis by estimated temperature change performed using logistic analysis model, the compression strength value predicted with logistic curve expression and the compression strength value measured in experiment were shown to have similar correlation, and the strength improvement analysis value by logistic model was shown to be estimated good when W/B is high.

  • PDF

Bond Strength of Reinforcing Steel to High Strength, High Flow Belite Concrete (고강도, 고유동 Belite 콘크리트의 부착성능)

  • 김상준;조필규;이세웅;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.653-660
    • /
    • 1998
  • Bond strength of reinforcing bar to high-performance concrete using belite cement is explored using beam end test specimen. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete covers. Specimen failed in the typical brittle bond failure splitting the concrete cover as the wedging action. The test results show that the specimens with belire cement concrete show higher bond strength than those with portland cement concrete. Bond strength of the top bar is less than bond strength of bottom bar, but the top bar factor satisfies the modification factor for top reinforcement. The results also show that the bond strength is function of the square root of concrete compressive strength and cover thickness. The recently developed high-strength and high-slump concrete with belite cement performs well in terms of bond strength to reinforcing steel.

  • PDF

Numerical analysis of the seismic performance of RHC-PVCT short columns

  • Xue, Jianyang;Zhao, Xiangbi;Ke, Xiaojun;Zhang, Fengliang;Ma, Linlin
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.257-267
    • /
    • 2019
  • This paper presents the results of cyclic loading tests on new high-strength concrete (HC) short columns. The seismic performance and deformation capacity of three reinforced high-strength concrete filled Polyvinyl Chloride tube (RHC-PVCT) short columns and one reinforced high-strength concrete (RHC), under pseudo-static tests (PSTs) with vertical axial force was evaluated. The main design parameters of the columns in the tests were the axial compression ratio, confinement type, concrete strength, height-diameter ratio of PVCT. The failure modes, hysteretic curves, skeleton curves of short columns were presented and analyzed. Placing PVCT in the RHC column could be remarkably improved the ultimate strength and energy dissipation of columns. However, no fiber element models have been formulated for computing the seismic responses of RHC-PVCT columns with PVT tubes filled with high-strength concrete. Nonlinear finite element method (FEM) was conducted to predict seismic behaviors. Finite element models were verified through a comparison of FEM results with experimental results. A parametric study was then performed using validated FEM models to investigate the effect of several parameters on the mechanical properties of RHC-PVCT short columns. The parameters study indicated that the concrete strength and the ratio of diameter to height affected the seismic performance of RHC-PVCT short column significantly.

Evaluation of Performance on Repair Materials for Creek Concrete Structures (콘크리트 복개구조물용 보수재료의 성능 평가)

  • Lee, Chang-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.205-212
    • /
    • 2002
  • The deterioration rate of concrete structures in urban area is accelerated due to rapid urbanization and environmental pollution. Repair materials and methods newly introduced in Korea should be investigated whether they are appropriate for the urban environment in Korea. The creek concrete structures are exposed in severe environmental condition than others. Based on these background in mind, the study is focused on evaluation of performance on repair materials used to rehabilitate creek concrete structures. To evaluate the performance of repair materials, four kinds of repair materials were selected based on polymer emulsion. This experimental study was conducted on fundamental performance such as setting time, compressive strength, bending strength, bonding strength, thermal expansion coefficient, and durability performance such as chloride diffusion, carbonation, chemical attack, and steel corrosion rate. On the basis of this study, the optimal repair material which is proper to the environment condition can be selected and service life of creek concrete structures can be extended. As a result, the life cycle cost can be reduced and the waste of material resources will be cut down.

Mechanical characteristics of Macro-Fiber Reinforced Concrete Pavement (매크로 섬유로 보강된 콘크리트 포장의 역학적 특성)

  • Choi, Sung-Yong;Jung, Woo-Tai;Park, Jong-Sup
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.171-174
    • /
    • 2009
  • This study analyzes the change of the basic characteristics of pavement concrete according to the reinforcement of macro-fiber and the results of the study can be summarized as follows. In the case of the compressive strength of the concrete, the fiber reinforced pavement concrete shows a small decreasing level compared to the basic mixing of pavement concrete (hereafter referred as 'Plain') based on the aging of 28 days. In particular, the polypropylene fiber made in Korea represents a decrease in the strength about 12% compared with that of the Plain. In the case of the tensile strength, it shows certain improvements in the tensile performance compared with that of the Plain. In particular, in the case of the polyvinyl alcohol fiber that shows the largest improvement in tensile performance, it shows an increase in its strength about 21%. In the case of the bending strength, there are no improvements in its strength in the fiber reinforced concrete compared to that of the Plain.

  • PDF