• Title/Summary/Keyword: Strength effect

Search Result 11,791, Processing Time 0.046 seconds

Effect of Aspect Ratio in Direct Tensile Strength of Concrete (콘크리트 직접인장강도의 세장비 효과)

  • Hong, Geon-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.246-253
    • /
    • 2003
  • Although concrete members are not normally designed to resist direct tension, the knowledge of tensile strength is of value in estimating the cracking load. In general, there are three types of test method for tensile strength ; direct tension test, flexural tension test, and splitting tension test. Though direct tensile strength represents the real tensile strength of concrete, direct tension tests are seldom carried out, mainly because it is very difficult to applicate a pure tension force. The purpose of this paper is to investigate the test methods, effect of aspect ratio, and the size effect on the direct tensile strength. Direct tension test, using bonded end plates, follows RILEM and U.S.Bureau of Reclamation. And other test methods follow ASTM provisions. Four kinds of aspect ratio and two kinds of size effect are tested. Same variables are tested by direct tension test and splitting tension test for comparison between the two test methods. Test results show that direct tensile strength of concrete is more affected by aspect ratio and size than other kinds of strength.

Size Effect on Axial Compressive Strength of Concrete (콘크리트의 축압축강도에 대한 크기효과)

  • 이성태;김민욱;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.153-160
    • /
    • 2001
  • In this study, the size effect on axial compressive strength for concrete members was experimentally investigated. Experiment of mode I failure, which is one of the two representative compressive failure modes, was carried out by using double cantilever beam specimens. By varying the eccentricity of applied loads with respect to the axis on each cantilever and the initial crack length, the size effect of axial compressive strength of concrete was investigated, and new parameters for the modified size effect law (MSEL) were suggested using least square method (LSM). The test results show that size effect appears for axial compressive strength of cracked specimens. For the eccentricity of loads, the influence of tensile and compressive stress at the crack tip are significant and so that the size effect is present. In other words, if the influence of tensile stress at the crack tip grows up, the size effect of concrete increases. And the effect of initial crack length on axial compressive strength is present, however, the differences with crack length are not apparent because the size of fracture process zone (FPZ) of all specimens in the high-strength concrete is similar regardless of differences of specimen slenderness.

Influence of Stress on Family Adaptation of Disabled Family : Focused on the Mediation Effect of Family Strength (장애인가족의 스트레스가 가족적응에 미치는 영향 : 가족건강성의 매개효과를 중심으로)

  • Sim, Mi-Young;Kim, Jae-Lim;Ahn, Seong-Ah
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.4
    • /
    • pp.267-276
    • /
    • 2014
  • The purpose of the study is to examine the influence of family stress on family adaptation and investigate the mediating effect of family strength on the association between family stress and family adaptation of disabled family. As a result, family stress bas also been from multiple regression analysis revealed that family stress has a significant effect on family adaptation through family strength. Family strength is found to have a full mediation effect. In summary, the findings suggest that disabled family with higher levels of family stress are more likely to have lower family strength and lower family strength decreases the probability of conducting family adaptation. Based on these results, the researchers suggest intervention strategies that could prevent family stress, family strength and family adaptation.

Probabilistic Fiber Strength of Composite Pressure Vessel (복합재 압력용기의 확률 섬유 강도)

  • 황태경;홍창선;김천곤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, probabilistic failure analysis based on Weibull distribution function is proposed to predict the fiber strength of composite pressure vessel. And, experimental tests were performed using fiber strand specimens, unidirectional laminate specimens and composite pressure vessels to confirm the volumetric size effect on the fiber strength. As an analytical method, the Weibull weakest link model and the sequential multi-step failure model are considered and mutually compared. The volumetric size effect shows the clearly observed tendency towards fiber strength degradation with increasing stressed volume. Good agreement of fiber strength distribution was shown between test data and predicted results for unidirectional laminate and hoop ply in pressure vessel. The site effect on fiber strength depends on material and processing factors, the reduction of fiber strength due to the stressed volume shows different values according to the variation of material and processing conditions.

Tension Stiffening Effect of High Strength Concrete (고강도 콘크리트의 인장강성효과에 대한 연구)

  • Yun, Sung-Ho;Kim, Jun-Seong;Yum, Hwan-Seok;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.495-500
    • /
    • 1998
  • This paper describes an experimental investigation on the effect of concrete strength on tension stiffening behavior. Total ten direct tension specimens were tested with concrete compressive strength range up to 900kg/$\textrm{cm}^2$. From the experimental program, it was observed that higher strength concrete specimens provides smaller crack spacings and less stiffening effect.

  • PDF

Effects of Specimen Depth on Flexural Compressive Strength of Concrete (콘크리트의 휨압축강도에 미치는 부재깊이의 영향)

  • Yi, Seong-Tae;Kim, Jin-Keun;Lee, Yun;Kim, Jang-Ho;Yang, Eun-Ik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.115-120
    • /
    • 2000
  • Currently, in evaluating a flexural strength of a concrete member, the effect of specimen depth has not been systematically studied, even though its effect on ultimate strength of a section is very important. For all types of loading conditions, the trend is that the strength of a member tends to decrease when the member depth increases. In this study, the influence of specimen depth on flexural compressive strength of concrete member was examined experimentally. A series of C-shaped specimens subjected to axial compressive force and bending moment were tested using three geometrically similar specimens with different length-to-depth ratios(h/c=1, 2 and 4) which have compressive strength of 55MPa. The results indicate that the flexural compressive strength decreased as the specimen depth increased. A model equation was derived based on regression analyses of the experimental data. Also the results show that ultimate strain decreases as the specimen depth increases. Finally, a general model equation for the depth effect is proposed.

  • PDF

Size Effect for Flexural Compression of Concrete Specimens (휨.압축 하중을 받는 콘크리트 부재의 크기효과)

  • 김진근;이성태;양은익;김민욱;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.371-376
    • /
    • 1998
  • In this study, the size effect of concrete members subjected to the axial load and bending moment is investigated using a series of C-shaped specimens of which test procedure is similar to those of Hognestad, Hanson, and McHenry's. Main test variable is a size ratio of the specimens(1:1/2:1/4) at the concrete compressive strength of 500kg/㎠. Test results show that the flexural compression strength at failure decreases as the size of specimen increases, that is, the size effect law is present. Model equation is derived using regression analyses with experimental data and it is compared with formulas for compressive strength of cylinders and shear strength of beams without stirrups. Size effects is distinct th following sequence; shear strength of beams without stirrups, compressive strength of C-shaped specimens, compressive strength of cylinders.

  • PDF

Effect of the precipitated calcium carbonate on Strength properties of paper (침강성 탄산칼슘이 종이의 강도적성질에 미치는 영향)

  • 신종순
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.7 no.1
    • /
    • pp.49-59
    • /
    • 1989
  • This study was made to Investigate the effect of tensile strength(kg/cm$^{2}$), opacity(%), porosity(cc/min) of the paper manufacturing with the freeness properties of NBKP and the calcium carbonate having the different physical and chemical properties. As the results, the opacity and porosity of the freeness of, NBKP, obtained good strength properties from the freeness 65$^{\circ}$SR and the tensile strength from the freeness 85$^{\circ}$SR. The strength properties of paper manufacturing loaded with calcium carbonate appears to be related to the effect of the freeness, and it was obtained the good results at opacity 83.8% in the freeness 85$^{\circ}$SR, tensile strength 3.8kg/m$^{2}$ porosity 87cc/min in the freeness 65$^{\circ}$SR. Addition of 50%, 55%, 60% CaCO$_{3}$ was found to increase slightly the strength properties of paper.

  • PDF

Effects of Specimen Length on Flexural Compressive Strength of Concrete (부재의 길이가 콘크리트의 휨압축강도에 미치는 영향)

  • 김진근;이성태;이태규
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.63-71
    • /
    • 1999
  • In evaluating the ultimate strength of a section for a reinforced concrete flexural member, the effect of member length is not usually considered, even though the strength tends to decrease with increase of member length. In this paper the influence of specimen length on flexural compressive strength of concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to axial compression and bending moment were tested using four different length-to-depth ratios (from 1,2,3 and 4) of specimens with compressive strength of 590 kgf/$\textrm{cm}^2$. Results indicate that for the region of h/c <3.0 the reduction in flexural compressive strength with increase of length-to-depth ratios was apparent. A model equation was depth of an equivalent rectangular stress block was larger than that by ACI. It was also founded that the effect of specimen length on ultimate strain was negligible. Finally more general model equation is also suggested.

Nondestructive Evaluation of Concrete Strength Considering Aging Effect (재령을 고려한 콘크리트의 비파괴강도평가)

  • Kim, Young-Jin;Lee, Sang-Min;Choi, Hong-Shik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.157-165
    • /
    • 1999
  • The nondestructive testing methods are commonly used to determine the in-situ compressive strength of concrete. The correlation curves to evaluate the effect of aging on the development of concrete strength was proposed. Thirty two ${\Phi}10{\times}20cm$ cylinder specimens were cast from 5 batches having different strength levels. The correlation curves for rebound hammer method, ultrasonic pulse velocity method and combined method were derived from the laboratory tests and multiple regression analysis. To account for the change of condition such as surface hardness, internal moisture contents, the aging coefficients are applied to the correlation curves. From the comparison the nondestructive strength with the core strength taken from the existing reinforced concrete structures, the validity of the proposed correlation curves are verified.

  • PDF