• Title/Summary/Keyword: Strength degradation

Search Result 1,119, Processing Time 0.024 seconds

Performance Evaluation of Steel Frame and Steel Damper Reinforced in RC frame (RC 골조에 보강된 강재프레임과 강재댐퍼의 성능 평가)

  • Lee, Hyun-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.77-84
    • /
    • 2023
  • In this study, the performance evaluation of the RC frame specimen (RV2) which was strengthened by a steel frame and a steel damper with the lateral deformation prevention details proceeded. The comparison objects are bare frame specimen (BF), RV2 and AWD, where AWD is a specimen reinforced with steel damper and aramid fiber sheets. In the evaluation of envelope curve, stiffness degradation, and energy dissipation capacity, RV2 was evaluated to have excellent capacity as a whole. To evaluate the strengthening effect of the steel frame based on the maximum strength and energy dissipation capacity, it was evaluated to have a 38% of the RV2's capacity.

Correlation of the Microstructural Degradation and Mechanical Properties of IN 738LC (IN 738LC 합금의 미세조직 열화와 물성의 상관성 연구)

  • Yoo Junghoon;Jo Sungwook;Shin Keesam;Hur Sungkang;Lee Je-Hyun;Kim Eui-Hyun;Jung Jine-sung;Chang Sungho;Song Geewook;Ha Jeongsoo
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.28-34
    • /
    • 2004
  • IN 738LC, the major material for gas-turbine for power generation, was heat treated at $750^{\circ}C$, $850^{\circ}C$, $950^{\circ}C$ for 1000, 2000, and 4000 hrs and the microstructural evolution and mechanical properties were examined using optical microscope, XRD, SEM/EDS. The results showed ${\gamma}$', the main strengthening elements in this alloy, was about 300 nm in size and was about 56% by area fraction in as-cast samples. The area fraction of ${\gamma}$' peaked at 2000 hours at $750^{\circ}C$. The average diameter of the ${\gamma}$' which was about 300 nm at ascast specimen increased to about 1 $\mu\textrm{m}$ after heat treatment at $950^{\circ}C$ for 4000 hrs. Carbides were formed at dendrite, cell or grain boundaries which was ascribed to the segregation caused by solute redistribution during solidification. It was found that MC type carbides formed at low temperature, whereas carbides of $M_{23}$ /$C_{ 6}$/ type formed at higher temperature or at longer degradation. The hardness and impact energy decreased as the heat treatment temperature or time of retention increased, which was inaccrodance with the area fraction of ${\gamma}$'.

A Study on the Shear Behaviors of Geosynthetic-soil Interface in the Waste Landfill Site (폐기물 매립장 차수시설 접촉면 전단특성에 관한 연구)

  • Park, Inn-Joon;Kwak, Chang-Won;Park, Jum-Bum;Cho, Jun-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.45-54
    • /
    • 2012
  • Various geosynthetics are widely applied to civil structures and waste landfill site for reinforcement and water resistance. The use of geosynthetics inevitably involves the coupled behaviors of different materials which include large displacement and strain-softening behaviors, etc. In this study, the effect of chemical element in the leachate on the interface shear strength under the cyclic loading condition was analyzed. The Multi-purpose Interface Apparatus (M-PIA) has been modified and cyclic direct shear tests have been performed. The submerging period of each specimen is 200 days. Additionally, the Field-Emission Scanning Electronic Microscopy (FIB) analysis has been also performed to induce the reason of the variation of disturbance function and verify the hypothesis on the decay-proof ability of geosynthetics. Consequently, the charateristics of chemical degradation of geosynthetic-soil interface are verified and the variation of the disturbance function is mainly caused by the different type of soil mineral decay, based on the FIB results.

Quasi-static test of the precast-concrete pile foundation for railway bridge construction

  • Zhang, Xiyin;Chen, Xingchong;Wang, Yi;Ding, Mingbo;Lu, Jinhua;Ma, Huajun
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.49-59
    • /
    • 2020
  • Precast concrete elements in accelerated bridge construction (ABC) extends from superstructure to substructure, precast pile foundation has proven a benefit for regions with fragile ecological environment and adverse geological condition. There is still a lack of knowledge of the seismic behavior and performance of the precast pile foundation. In this study, a 1/8 scaled model of precast pile foundation with elevated cap is fabricated for quasi-static test. The failure mechanism and responses of the precast pile-soil interaction system are analyzed. It is shown that damage occurs primarily in precast pile-soil interaction system and the bridge pier keeps elastic state because of its relatively large cross-section designed for railways. The vulnerable part of the precast pile with elevated cap is located at the embedded section, but no plastic hinge forms along the pile depth under cyclic loading. Hysteretic curves show no significant strength degradation but obvious stiffness degradation throughout the loading process. The energy dissipation capacity of the precast pile-soil interaction system is discussed by using index of the equivalent viscous damping ratio. It can be found that the energy dissipation capacity decreases with the increase of loading displacement due to the unyielding pile reinforcements and potential pile uplift. It is expected to promote the use of precast pile foundation in accelerated bridge construction (ABC) of railways designed in seismic regions.

Initiation and Growth Behavior of Small Fatigue Cracks in the Degraded 2 1/4 Cr-1 Mo Steel (2 1/4 Cr-1 Mo강 劣化材의 微小 疲勞龜裂의 발생 및 진전거동)

  • 곽상국;장재영;권재도;최선호;장순식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.53-62
    • /
    • 1992
  • Material can be degraded by using it for a long service under the high temperature and pressure circumstances, Therefore, material degradation can affect the strength of mechanical structures. At present, the life prediction of the degraded structures is considered as an important technical problem. In this paper, the degraded 21/4Cr-lMo steel is the material used for about 10 years around 400.deg. C in an oil refinery plant. The recovered one was prepared out of the above degraded steel by heat treatment for one hour at 650.deg. C. The degradation effect was investigated through the tension test, Hardness test and Charpy impact test. On the smooth surface material, the fatigue crack initiation, growth and coalescence stages of the distributed small cracks were investigated with photographs, and the crack length and density were measured. The measuring results were analyzed by quantative and statistical methods.

Evaluation of Nanoscale Zero-valent Iron for Reductive Degradation of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX): Batch and Column Scale Studies (Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)의 환원적 분해를 위한나노영가철의 성능평가: 회분식 및 칼럼 실험)

  • Lee, Chung-Seop;Oh, Da-Som;Cho, Sung-Heui;Lee, Jin-Wook;Chang, Yoon-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.117-126
    • /
    • 2015
  • Reductive degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by nanoscale zero-valent iron (nZVI) was investigated to evaluate the feasibility of using it for in-situ groundwater remediation. Batch experiments were conducted to quantify the kinetics and efficiency of RDX removal by nZVI, and to determine the effects of pH, dissolved oxygen (DO), and ionic strength on this process. Experimental results showed that the reduction of RDX by nZVI followed pseudo-first order kinetics with the observed rate constant (kobs) in the range of 0.0056-0.0192 min−1. Column tests were conducted to quantify the removal of RDX by nZVI under real groundwater conditions and evaluate the potential efficacy of nZVI for this purpose in real conditions. In column experiment, RDX removal capacity of nZVI was determined to be 82,500 mg/kg nZVI. pH, oxidation-reduction potential (ORP), and DO concentration varied significantly during the column experiments; the occurrence of these changes suggests that monitoring these quantities may be useful in evaluation of the reactivity of nZVI, because the most critical mechanisms for RDX removal are based on the chemical reduction reactions. These results revealed that nZVI can significantly degrade RDX and that use of nZVI could be an effective method for in-situ remediation of RDX-contaminated groundwater.

A Study on Conductivity Characteristics of Insulating Oil by Corona Discharge in Oil (유중(油中)코로나 방전(放電)으로 인(因)한 절연유(絶緣油)의 도전특성(導電特性)에 관한 연구(硏究))

  • Kim, Young-Ill
    • Journal of radiological science and technology
    • /
    • v.2 no.1
    • /
    • pp.71-83
    • /
    • 1979
  • Not only the insulating oil used for extra high voltage and high capacity transformer has a lot of possibilites of a corona discharge in oil, but the oil is easily degraded by a response of light oxidization. This study is either to classfy, with priority given to a transformer oil produced in Korea belonging to, the insulating oil No. 2, the sample irradiated the ultraviolet rays, treated a corona discharge in oil by a high voltage DC source and done nothing, or to measure the characteristics of breakdown, V-i, I-t and electrode material. The obtained results can be summarized as followings: (1) Unless the sample is contacted with the air, on the process to irradiate the ultraviolet rays, the sample less influence on the changes of the electric characteristics. At the same time, if the sample is contacted with the air and irradiated the ultraviolet rays, the sample shows a remarkable changes of the electric characteristics, and a declined breakdown strength. This tells us that the influence of the light irradiation must be considered as a primary factor of degrading the insulating oil. (2) In the oil treated by a corona discharge, breakdown voltage is declined more than in the oil not to be treated with it. This means that the degradation of the insulating oil is getting increased by a corona discharge in oil. (3) It shows that the increase of conducting current has little to do with breakdown voltage. (4) The conducting current depending on the electrode materials can be put in order by value as Al>Cu>Fe. This is due to the differences of the work function of each metals, and an chemical reaction with the insulating oil. These result can be a great help in verifying the degradation progress of the insulating oil and furnish a new technical information to the manufacturers of the insulating oil and electrical equipment designers and operators. Besides, this study would be helpful to improve the electrical characteristics of the insulating oil produced in Korea.

  • PDF

Hysteretic Behavior of Compressive Braces upon Repeated Cyclic Loading Based on the Review of Existing Data (기존 실험 자료를 통한 압축 철골가새의 반복 이력거동에 관한 고찰)

  • Lee, Kangmin
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.359-368
    • /
    • 2003
  • Design and detailing requirements of seismic provisions for Concentrically Braced Frames (CBF) were specified based on the premise that bracing members with large KL/r and low b/t have superior seismic performance. However, relatively few tests have been done to investigate the cyclic behavior of CBF. Therefore, the question lies on whether the compression member of CBF plays as significant a role as what has been typically assumed by design providers. In this paper, existing experimental data were reviewed to quantify the extent of hysteretic energy achieved by bracing members in past compression tests as well as the extent of degradation of the compression force given repeated cycling loading.

Research Trend of The Heat-Treatment of Wood for Improvement of Dimensional Stability and Resistance to Biological Degradation (목재의 치수안정성과 내후성 개선을 위한 열처리 가공에 관한 연구 동향)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.457-476
    • /
    • 2016
  • This was investigated on the major issues and research trends regarding the heat-treatment of woods through literature reviews. The principal heat-treatment technologies utilized for industrial purposes include the Plato-process (Netherlands), the Retification process (France), the OHT-process (Germany), and the Thermowood Process (Finland). Factors that mainly influence the heat-treatment process are the wood species, process temperature, processing time, and the heating medium (air, steam, vacuum, N2, oil, etc.). Researches on investigating the optimal conditions with these process conditions being the variables stand as the mainstream. Heat-treated woods present dimensional stability improvement, but mass loss and strength reduction, a wide variations for decaying inhibition, and insufficient resistance against mold, wood borer, and termites. For further improvement in respects of durability or resistance to biological degradation, necessity to search for more suitable heat treatment process and processing conditions fit for each wood species has been suggested. Exploiting new ways to utilize heat-treated wood and extending its range of use have been considered to be important matters that need more effort put into for the sustainable and sound environment as well as saving the wood resources.

Seismic Control of Stiffness-degrading Inelastic SDOF Structures with Fully Elasto-Plastic Dampers (강성저감형 비탄성 단자유도 구조물에 설치된 완전탄소성 감쇠기의 제진성능)

  • Park, Ji-Hun;Kim, Hun-Hee;Kim, Ki-Myon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.37-48
    • /
    • 2010
  • The seismic control effect of reinforced concrete structures with low energy dissipating capacity due to stiffness degradation is investigated through nonlinear time history analysis. The primary structure is idealized as a SDOF system of modified Takeda hysteresis rule and an elasto-perfectly-plastic nonlinear spring is added to represent a hysteretic damping device. Based on statistics of the numerical analysis, equivalent linearization techniques are evaluated, and empirical equations for response prediction are proposed. As a result, estimation of the ductility demand with proposed empirical equations is more desirable than the equivalent linearization techniques. The optimal yield strengths based on empirical equations are significantly different from the optimal yield strength of elasto-perfectly-plastic systems. Also, the results indicate that the reduction effect of the ductility demand is more remarkable for smaller natural periods.