• Title/Summary/Keyword: Strength degradation

Search Result 1,119, Processing Time 0.033 seconds

Prognostics and Health Management for Battery Remaining Useful Life Prediction Based on Electrochemistry Model: A Tutorial (배터리 잔존 유효 수명 예측을 위한 전기화학 모델 기반 고장 예지 및 건전성 관리 기술)

  • Choi, Yohwan;Kim, Hongseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.939-949
    • /
    • 2017
  • Prognostics and health management(PHM) is actively utilized by industry as an essential technology focusing on accurately monitoring the health state of a system and predicting the remaining useful life(RUL). An effective PHM is expected to reduce maintenance costs as well as improve safety of system by preventing failure in advance. With these advantages, PHM can be applied to the battery system which is a core element to provide electricity for devices with mobility, since battery faults could lead to operational downtime, performance degradation, and even catastrophic loss of human life by unexpected explosion due to non-linear characteristics of battery. In this paper we mainly review a recent progress on various models for predicting RUL of battery with high accuracy satisfying the given confidence interval level. Moreover, performance evaluation metrics for battery prognostics are presented in detail to show the strength of these metrics compared to the traditional ones used in the existing forecasting applications.

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

Effect Of Silica Concentration and Crosslinking Agent on Adhesion Properties and Thermal Stability Of UV Cured 2-EHA/AA PSAs (자외선 경화형 2-EHA/AA 점착제의 점착 물성 및 열 안정성에 미치는 실리카 함량 및 경화제 효과)

  • Kim, Ho-Gyum
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • It was investigated that the effect of surface modification and concentration of fumed silica on the adhesion properties and thermal stability of 2-EHA/AA pressure sensitive adhesive (PSAs) prepared by UV irradiation. The influence of repeating units of crosslinking agent on PSAs were also studied. From SEM analysis, PSAs synthesized with surface modified silica had finer dispersion of silica particles in polymer matrix due to the interfacial interaction. Results of the study showed that increase in tack and peel strength when under 0.3 wt% of silane treated silica were added in the reaction mixture. The addition of PEGDMA for crosslinking agent offers positive effect on adhesion properties in comparison with PSAs using EGDMA for crosslinker, which may be attributed to high mobility of ethylene oxide repeating units in PEGDMA. From the thermal degradation residue of PSAs, it was revealed that thermal stability was improved with silica addition due to the strong interfacial bonding between silane modified silica and polymer matrix, which may act as a thermal barriers into 2-EHA/AA PSAs.

Morphology and Mechanical Properties of Polyurethane/Organoclay Nanocomposites (폴리우레탄/유기화 점토 나노복합체의 모폴로지와 기계적 물성)

  • Park, Kyu-Nam;Yoon, Kwan-Han;Bang, Dae-Suk
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.224-231
    • /
    • 2007
  • Polyurethane (PU) was prepared with the compositions of polytetramethylene glycol (PTMG) having two different molecular weight (250, 1000 g/mol). The optimum composition of PTMG 250/1000 was 60/40 based on the mechanical properties. PU/organoclay nanocomposites were prepared with several kinds of organoclay. The mechanical properties of nanocomposite prepared with 93A were considerable. The improvement in tensile strength and modulus for PU/organoclay nanocomposite with the application of ultrasound compared to the PU/organoclay nanocomposite without the application of ultrasound was factors of 1.2, and hardness (shore A type) increased from 90 to 95. The difference in thermal degradation was not observed. The results of transmission electron micrographs and X-ray measurements suggest that the intercalated organoclay in PU matrix was observed.

Synthesis of the Low-Hygroscopic Polyimide for 2-Layer Flexible Copper Clad Laminate (2층 연성동박적층판용 저흡습 폴리이미드의 합성)

  • Kim, W.;Park, S.J.;Baek, J.O.;Gong, H.J.;Ahn, B.H.
    • Elastomers and Composites
    • /
    • v.43 no.2
    • /
    • pp.82-87
    • /
    • 2008
  • In this study, nine kinds of polyimides were synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA), 4,4'-(4,4'-isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA), m-pheny lenediamine (m-PDA) and 4,4'-oxydianiline (ODA) by controlling molar ratio of monomers. Synthesized polyimides were used as insulator films for 2-layer Flexible Copper Clad Laminate(FCCL) which were manufactured by the casting method. Glass transition temperature and thermal degradation temperature for 5% weight loss of the polyimide film were improved by increasing contents of m-PDA and PMDA, respectively. Water absorption of polyimide film was reduced by increasing contents of ODA and BPADA which have relatively long structure, respectively. Peel strength of 2-layer FCCL was improved by increasing contents of ODA and BPADA.

Recent Trends of Friction Stir Welding of Titanium (타이타늄 소재 마찰교반용접 기술 동향)

  • Chun, Chang-Keun;Kim, Sung-Wook;Kim, Heung-Joo;Chang, Woong-Seong;Noh, Joong-Suk
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.16-20
    • /
    • 2013
  • Titanium and its alloys have been widely using in the various field of industry application due to high corrosion resistant properties and mechanical properties. Titanium is highly reactive in the high temperature state and the formation of titanium oxide and porosities in the nuggets of fusion welding will results in the degradation of the mechanical properties. For this reason the studies of friction stir welding for titanium have been investigated recently. The FSW zones of titanium were classified by the weld nugget (WN), the linear transition boundary (TB) and the heat affected zone (HAZ). The WN along with titanium parent was characterized by the presence of twins and dislocations. The average grain size and hardness of WN has been changed according to heat input. The grain refinement resulted from the FSW increased the hardness in the stir zone. Sound dissimilar joints between SUS 304 and CP-Ti were achieved using an advancing speed of 50 mm/min and rotation speeds in the range of 700-1100 rpm. Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding, hence the ultimate tensile shear strength of joint reached 100% of Al 1060. Mg alloy and Ti were successfully butt joined by inserting a probe into the Mg alloy plate with slightly offsetting. But Ti-Al intermetallic compound layers formed at the interface of these joints.

Effect of Additional Water on Durability and Pore Size Distribution in Cement Mortar (단위수량 증가에 따른 시멘트 모르타르의 내구성능과 공극분포에 관한 연구)

  • Kwon, Seung Jun;Lee, Hack Soo;Park, Sun Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.75-83
    • /
    • 2012
  • Porosity in concrete has close relationship with durability characteristics. Additionally mixed water can help easy mixing and workability but causes increased porosity, which yields degradation of durability performance. In this paper, cement mortar samples with 0.45 of w/c (water to cement ratio) are prepared and durability performances are evaluated with additional water from 0.45 to 0.60 of w/c. Various durability tests including strength, chloride diffusion, air permeability, saturation, and moisture diffusion are performed. Then they are analyzed with changing porosity. Changing ratios and the patterns of durability performance are quantitatively evaluated considering pore size distribution, total porosity, and additional water content.

A fundamental study on the sulphate-resistant mortar using waste glass fine powder and meta-kaolin according to various fine aggregates (잔골재 종류에 따른 폐유리 미분말 및 메타카올린을 사용한 내황산염 모르타르에 관한 기초적 연구)

  • Jeong, Dongwhan;Park, Junhui;Ahn, Taeho;Park, Yeongsik;Sho, Kwangho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.115-121
    • /
    • 2017
  • The degradation of the concrete due to deterioration factors, such as corrosion of steel bars, cracks and structural strength of reinforced concrete structures, is a social problem. Especially, concrete structures constructed in seawater, underground water, waste water treatment facilities and sewerage are subject to chemical attack by acid and sulphate. Therefore, this study was conducted to compare sulfated glass and fine aggregate of slag using waste glass fine powder and meta kaolin. The results showed that the slag fine aggregate showed better sulfate resistance than the river sand, and the fine powder of waste glass showed the best performance at 3 % displacement.

Deformability of RC Beam-Column Assembles (철근콘크리트 보-기둥 접합부의 연성능력)

  • Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.193-196
    • /
    • 2008
  • This paper proposes a method to predict the ductility capacity of reinforced concrete beam-column joints failing in shear after the formations of plastic hinges at both ends of the adjacent beams. The current design code divides joints into two categories: Type 1 for structures in non seismically hazard area and Type 2 in seismically hazard area. While there are many researches related to joint shear strength in Type 1, those in regard to joint ductility capacity of Type 2 are scarce. This paper classified the ductility capacity of beam-column joints into column, joint panel, and beam deformability. Since a brittle failure such as shear or bond failure in the columns must be avoided, column deformability was calculated by elastic analysis. The plastic hinges of the adjacent beams affect joint deformability. Therefore, the prediction of joint deformability was calculated with consideration to the degradation of the diagonally compressed concrete due to the strain penetration.

  • PDF

Experimental Study of Coupled Shearwalls with different Coupling Member (인방보의 형태에 따른 개구부가 있는 전단벽의 거동 특성에 대한 실험적 연구)

  • Bae, Baek-Il;Choi, Hyun-Ki;Choi, Yoon-Chel;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.37-40
    • /
    • 2008
  • Many engineers find the way of improving the old building's structural behavior in the remodeling project which is performed using artificial openings for merging two houses. This test was performed to verify the characteristics of coupling beams according to the shape of the openings. One of test specimen has rectangle shape and the other was made by the circle shaped opening and one has coupling member only as slabs. Additionally, three specimens which have openings have 23% ratio in opening area to total wall area. Consequently, solid type which have no opening area shows shear failure. In the case of CW-RBS which have rectangular shaped opening, cracks are developed in coupling beam significantly. And CW-CS which has circular opening failed in shear showing development of diagonal cracks at wall toes and wall mid-height. It is thought that degradation of the wall strength is under the control of the opening shape and coupling beam-wall connection area.

  • PDF