• Title/Summary/Keyword: Strength characteristics of model ice

Search Result 4, Processing Time 0.021 seconds

A Study on the Strength Characteristics of Model Ice for Warm-up Time during Model Ice Preparation (모형빙 생성 시 승온 시간에 따른 모형빙의 강도 특성 연구)

  • Jeong, Seong-Yeob;Ha, Jung-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • Understanding the strength characteristics of model ice is an important issue for model testing in an ice model basin to estimate the ship performance in ice. In particular, the mechanical properties of the model ice including elastic modulus, flexural strength and compressive strength are key consideration factors. In order to understand the characteristics of the model ice during warm-up phase at KRISO's ice model basin, the strength properties are tested in this study. The infinite plate-bending method, in-situ cantilever beam test and ex-situ uniaxial compressive test are conducted to determine the strength properties of model ice. The strength characteristics of the model ice are then analyzed in terms of the warm-up phase and seasonality. These results could be valuable to quality control of the model ice characteristics in KRISO's ice model basin and to better understand the variations in strength properties during the ice model tests.

Study on the procedure to obtain an attainable speed in pack ice

  • Kim, Hyun Soo;Jeong, Seong-Yeob;Woo, Sun-Hong;Han, Donghwa
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.491-498
    • /
    • 2018
  • The cost evaluation for voyage route planning in an ice-covered sea is one of the major topics among ship owners. Information of the ice properties, such as ice type, concentration of ice, ice thickness, strength of ice, and speed-power relation under ice conditions are important for determining the optimal route in ice and low operational cost perspective. To determine achievable speed at any designated pack ice condition, a model test of resistance, self-propulsion, and overload test in ice and ice-free water were carried out in a KRISO ice tank and towing tank. The available net thrust for ice and an estimation of the ice resistance under any pack ice condition were also performed by I-RES. The in-house code called 'I-RES', which is an ice resistance estimation tool that applies an empirical formula, was modified for the pack ice module in this study. Careful observations of underwater videos of the ice model test made it possible to understand the physical phenomena of underneath of the hull bottom surface and determine the coverage of buoyancy. The clearing resistance of ice can be calculated by subtracting the buoyance and open water resistance form the pre-sawn ice resistance. The model test results in pack ice were compared with the calculation results to obtain a correlation factor among the pack ice resistance, ice concentration, and ship speed. The resulting correlation factors were applied to the calculation results to determine the pack ice resistance under any pack ice condition. The pack ice resistance under the arbitrary pack ice condition could be estimated because software I-RES could control all the ice properties. The available net thrust in ice, which is the over thrust that overcomes the pack ice resistance, will change the speed of a ship according to the bollard pull test results and thruster characteristics (engine & propulsion combination). The attainable speed at a certain ice concentration of pack ice was determined using the interpolation method. This paper reports a procedure to determine the attainable speed in pack ice and the sample calculation using the Araon vessel was performed to confirm the entire process. A more detailed description of the determination of the attainable speed is described. The attainable speed in 1.0 m, 90% pack ice and 540 kPa strength was 13.3 knots.

Analysis Method of Ice Load and Ship Structural Response due to Collision of Ice Bergy Bit and Level Ice (유빙 및 평탄빙의 충돌에 의한 빙하중과 선체구조응답 해석기법)

  • Nho, In Sik;Lee, Jae-Man;Oh, Young-Taek;Kim, Sung-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • The most important factor in the structural design of ships and offshore structures operating in arctic region is ice load, which results from ice-structure interaction during the ice collision process. The mechanical properties of ice related to strength and failure, however, show very complicated aspect varying with temperature, volume fraction of brine, grain size, strain rate and etc. So it is nearly impossible to establish a perfect material model of ice satisfying all the mechanical characteristics completely. Therefore, in general, ice collision analysis was carried out by relatively simple material models considering only specific aspects of mechanical characteristics of ice and it would be the most significant cause of inevitable errors in the analysis. Especially, it is well-known that the most distinctive mechanical property of ice is high dependency on strain rate. Ice shows brittle attribute in higher strain rate while it becomes ductile in lower strain rate range. In this study, the simulation method of ice collision to ship hull using the nonlinear dynamic FE analysis was dealt with. To consider the strain rate effects of ice during ice-structural interaction, strain rate dependent constitutive model in which yield stress and hardening behaviors vary with strain rate was adopted. To reduce the huge amount of computing time, the modeling range of ice and ship structure were restricted to the confined region of interest. Under the various scenario of ice-ship hull collision, the structural behavior of hull panels and failure modes of ice were examined by nonlinear FE analysis technique.

Verification and application of Target Strength for Japanese anchovy (Engraulis japonicas) by theoretical acoustic scattering model (이론모델을 이용한 멸치의 음향산란강도의 검토 및 적용)

  • Hwang, Kangseok;Lee, Kyounghoon;Hwang, Bo-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.4
    • /
    • pp.487-494
    • /
    • 2012
  • Acoustical backscattering characteristics of Japanese anchovy can be estimated by Kirchhoffray mode model (KRM model) due to estimate exact body and swim-bladder shape of the fish, the samples were rapidly frozen by dry-ice and alcohol. X-ray photos for ventral and lateral direction for 6 samples were taken and the 3D coordinates of the body swim-bladder were estimated by digitizing from the photos. The angles between the axis of body and swim-bladder were about $9^{\circ}$ at 38kHz and $7^{\circ}$ at 120kHz, 200kHz. General formula of TS and BL estimated were < $TS_{38kHz}$ >=20logBL-67.3, < $TS_{120kHz}$ >=20logBL-66.6, < $TS_{200kHz}$ >=20logBL-67.0. As a result, we confirmed KRM model is very useful to estimate TS (Target Strength) for design of experiment and it also can be applied to estimate the abundance of Japanese anchovy distributed by 2 frequency difference method in the survey area.