• Title/Summary/Keyword: Strength Resistance

Search Result 4,788, Processing Time 0.039 seconds

State-of-the-Art Research and Experimental Assessment on Fire-Resistance Properties of High Strength Concrete (고강도 콘크리트의 내화 특성에 관한 기존연구 고찰 및 실험적 연구)

  • Kim, Woo-Suk;Kang, Thomas H.K.;Kim, Wha-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.28-39
    • /
    • 2014
  • This paper reviews past literatures relevant to fire-resistance properties of high strength concrete and investigates spalling mechanism of high strength concrete in fire. First, literatures were reviewed on spalling occurrence and fire-resistance methods. Second, a chemical change of concrete components in an elevated temperature was presented. Finally, the mechanism of the spalling occurrence and spalling resistance were examined in terms of hybrid fiber content. The focus of the experimental study as part of this research is to investigate the effects of fire on the variation of thermal properties of high strength concrete, which tends to be used in super tall buildings. This experimental study was devised to investigate the fire-resistance performance of high strength concrete containing hybrid fibers. A total of 48 test specimens were exposed to high temperature ranging from $100^{\circ}C$ to $700^{\circ}C$, including room temperature (${\sim}20^{\circ}C$). Test results provide valuable information regarding fire-resistance properties of strength concrete with 100 MPa or greater.

Development of Ultra-Lightweight High Strength Trench Using Lightweight Polymer Concrete

  • Sung, Chan-Yong;Kim, Young-Ik
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.20-26
    • /
    • 2003
  • The ultra-lightweight high strength polymer concrete could be used for the drain structures under severe condition. In this study, materials used were unsaturated polyester resin, heavy calcium carbonate, artificial lightweight coarse aggregate and perlite. In the test results, the unit weight of the ultra-lightweight high strength polymer concrete was 946 kg f/$\textrm{m}^3$ and the compressive strength was appeared in 34.5 MPa. The compressive strength, splitting tensile strength, flexural strength, acid resistance and weather resistance were shown in excellently than that of the normal cement concrete. The draining trench had 1m length, 0.24 m width, 0.02 m thickness and 0.07 m height. The developed trench could be effectively used at the draining structures.

Void Ratio, Compressive Strength and Freezing and Thawing Resistance of Natural Jute Fiber Reinforced Non-Sintering Inorganic Binder Porous Concrete (자연마섬유보강 비소성 무기결합재 다공성 콘크리트의 공극률, 압축강도 및 동결융해저항성 평가)

  • Kim, Hwang Hee;Kim, Chun Soo;Jeon, Ji Hong;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.67-73
    • /
    • 2015
  • This study evaluated the effects of fibers on the void ratio, compressive strength and repeated freezing and thawing resistance of porous vegetation concrete with binder type (non-sintering inorganic binder and blast furnace slag cement) and natural jute fiber volume fraction (0.0 %, 0.1 % and 0.2 %). The natural jute fiber volume fraction affected the void ratio, compressive strength and repeated freezing and thawing resistance. Added of natural jute fiber resulted in improved properties of the void ratio, compressive strength and freezing and thawing resistance. Also, the both compressive strength and freezing and thawing resistance increased with natural jute fiber volume fraction up to 0.1 % and then decreased with fiber volume fraction at 0.2 %.

Effects of Elastic Band Resistance Training on Muscle Strength among Community-Dwelling Older Adults: A Systematic Review and Meta-Analysis

  • Yeun, Young-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.3
    • /
    • pp.71-77
    • /
    • 2018
  • The purpose of this study was to investigate the effectiveness of elastic band resistance training for muscle strength among community-dwelling older adults. The systematic review and meta-analysis was conducted by following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). Data were pooled using fixed effect models. Sit to stand, arm curl, and grip strength were analyzed for main effects. Heterogeneity between studies was assessed using the I2 statistics and publication bias was evaluated by funnel plots. Twelves studies were included representing 611 participants. Elastic band resistance training was effective for lower (d=3.89, 95% CI: 3.03, 4.75) and upper extremity muscle strength (d=4.08, 95% CI: 2.94, 5.23). Heterogeneity was moderate and no significant publication bias was detected. Based on these findings, there is clear evidence that elastic band resistance training has significant positive effects on muscle strength among community-dwelling older adults. Further study will be needed to perform subgroup analysis using number of sessions and exercise intensity as predictors.

Development of Newly Formulated High-strength Wash Primer for Membrane LNG Carrier (멤브레인형 LNG 운반선용 고강도 워시프라이머 개발)

  • Song, Eun-Ha;Lee, Sung-Kyun;Chung, Mong-Kyu;Baek, Kwang-Ki
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.48-56
    • /
    • 2007
  • Wash primer was applied to cargo tank of Membrane-LNG Carrier (M-LNGC) for corrosion resistance and high bond-strength with the mastic. However, a lack of bond-strength verification at high thickness wash primer coating resulted in strict coating thickness control. Therefore wash primer was controlled below DFT(Dry Film Thickness) $30{\mu}m$. In order to develop the wash primer satisfying GTT (GAZ TRANSPORTAION TECHNIGAZ) standard even at high thickness, we evaluated coating properties such as wash primer/mastic bond-strength, corrosion resistance, as well as workability for the newly formulated wash primer materials. The newly formulated wash primer had high bonding-strength to mastic even at high thickness and had proper corrosion resistance and workability suitable to yard condition.

  • PDF

Mechanical Properties and Carbonation Resistance of Water-Soluble Sulfur Concrete (수용성 유황 첨가 콘크리트의 역학 특성 및 탄산화 저항성)

  • Hong, Ki Nam;Ji, Se Young;Park, Jae Kyu;Jung, Kyu San;Han, Sang Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.103-109
    • /
    • 2014
  • In this study, two types of water-soluble sulfur, LSA and LSB, were developed and the influence of the water-soluble sulfur on the mechanical properties and durability of concrete were experimentally evaluated. In order to evaluate mechanical properties and carbonation resistance of concrete with water-soluble sulfur, compressive strength test, flexural strength test, bonding strength test, and carbonation resistance test were performed. Compressive strength of only concrete with 1% LSA was increased while that of concrete with LSB was proportionally increased with the higher LSB dosage. On the other hand, flexural strength of concrete with LSA and LSB was increased by 12-41% and 36-74%, respectively. Carbonation resistance of concrete with water-soluble sulfur were increased by 25-66%. As a result, it should be noted that the water-soluble sulfur can not only solve the demerit of sulfur concrete but also offer the durability of sulfur concrete.

A Study on the Development of Electric Resistance Welding of DP780 Grade Steel for Hydroforming Tube (하이드로포밍용 DP780MPa급 강판의 전기저항용접 강관 개발에 관한 연구)

  • Park, Sungpill;Kwon, Yongjai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.279-286
    • /
    • 2015
  • To achieve lightweight design, research & development of various lightweighting technologies such as hydroforming are underway worldwide. In the case of hydroforming, application of ultra high strength steel is essential for weight reduction of the car. However, considering common high-strength carbon steel, it is not suitable to the actual hydroformed parts since the lack of formability. DP steel offers an outstanding combination of strength and formability as a result of their microstructure. DP steel has high strength and good formability but it's difficult to secure stable quality of welding section because of softening of weld section and chemical composition. Therefore, most of companies use LASER welding when making high strength tube. Electric resistance welding is excellent production method for steel tube manufacturing considering the productivity. Optimum electric resistance welding technology is needed to be developed for application of high strength hydroformed parts using DP steel. This study is comprehensive research & development from electric resistance welding to actual formabililty evaluation.

Evaluation of Impact Resistance of Hybrid Fiber Reinforced Cementitious Composites Subjected to Thermal Stress (열응력을 받은 하이브리드 섬유보강 시멘트 복합체의 내충격성능 평가)

  • Han, Seung-Hyeon;Kim, Gyu-Yong;Lee, Yae-Chan;Eu, Ha-Min;Park, Jun-Young;Nam, Jung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.145-146
    • /
    • 2023
  • In this study, the effect of hybrid fiber reinforcement on the residual strength and impact resistance of high-strength cementitious composites exposed to high temperatures was investigated. A cementitious composites was manufactured in which 0.15 vol% of polypropylene fiber (PP) and 1.0 vol% of smooth steel fiber (SSF) were double-mixed, and a residual strength test was conducted while thermal stress was applied by heating test, and then a high-velocity impact test was performed. In the case of general cementitious composites, the rear surface is damaged due to explosion and low tensile strength during high temperature or impact, while hybrid fiber reinforced cementitious composites can repeatedly absorb and distribute stress until multiple fibers are damaged to suppress the propagation of impact and resistance to explosion. Therefore, this study analyzed the residual strength of cementitious composites exposed to high temperatures depending on whether hybrid fibers were mixed or not, and collected research data on fracture behavior through high-speed impact tests to evaluate impact resistance and mechanical properties.

  • PDF

The Effect on Strength Development of Cement Mortar using Accelerators for Freezing Resistance with the Curing Condition (양생조건이 내한촉진제를 사용한 시멘트 모르타르의 강도증진에 미치는 영향에 관한 연구)

  • Won, Cheol;Kim, Dong-Seok;Park, Sang-Joon;Lee, Sang-Soo;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.533-536
    • /
    • 2001
  • When fresh concrete is exposed to low temperature, the concrete may suffer frost damage due to freezing at early ages and strength development may be delayed. One of the solution methods for resolving these problems is to reduce freezing temperature of concrete by the use of chemical admixture called Accelerators for freezing resistance. In this study, we investigate the effect on strength development of cement mortar using accelerators for freezing resistance with the variance curing condition. As the result of this study, the mortar using accelerators for freezing resistance show that continuously strength development in curing condition of -5$^{\circ}C$. And compressive strength under the variance temperature condition was higher than fixed temperature condition in same maturity.

  • PDF

The Study on Earlier Evaluation of Concrete Strength Using Electric Resistance Method (전기 저항법을 이용한 콘크리트 조기 강도 판정에 관한 연구)

  • 김화중;이도현;윤상천;박정민;최신호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.130-135
    • /
    • 1995
  • We can consider that the study on early evaluation of strength of concrete is useful to raise safety of building and utility of quality control of concrete is useful to raise safety of building and utility of quality control of concrete. In this paper, was proposed to method early to predict strength of concrete with key parameters, such as Water/Cement(W/C) ratio and Sand / Aggregate(S/A) ratio. Through a series of experiment, the obtained results are summarized as follow. $\circled1$ The ratio of resistance was decteased as the increase of W/C ratio. $\circled2$ The maximum value for the ratio of resistance and compressive strength was presented in the case of 40% S/A ratio. $\circled3$ The relationship. of the ratio of resistance and compressive strength on 28days according to the change of W/C and S/A ratio is to be: $F_{28}=-0.00104R^2 + 2.263R - 935.5$ (W/C Ratio) $F_{28} = 0.007R^2 - 10.693R - 4269.1$ (S/A Ratio)

  • PDF