• Title/Summary/Keyword: Strength Optimization

Search Result 840, Processing Time 0.023 seconds

A Study on the Shift Motor Driving System Optimization of 4-WD Power Transformation Device (4-WD 동력전환장치의 변속 모터 구동부 최적화에 관한 연구)

  • Youm, Kwang Wook;Ham, Seong Hun;Oh, Se Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1187-1192
    • /
    • 2013
  • In the case of 4 wheel drive (4-WD) type car, power switching occurs to 4-WD by operating lever or switch that operates power switching device attached in transfer case which can operate motor by electric signal. So if the RPM of motor is high, power switching will not exactly occur and can cause damage to gear in transfer case according to circumstances. So in this study, we applied 2 level of planet gear type motor spindle of motor drive part of a power train. And conducted decelerating to increase torque to switch power safe and accurately. Also, we researched efficiency of gear by designing reduction gear ratio and gear type and by calculating contact stress and bending strength. Based on researched content, we made drive head of power switching device and a reduction module which uses type that uses motor spindle as sun gear and ring gear as cover.

Genotype Effect on Somatic Embryogenesis and Plant Regeneration of 15 Aralia elata (두릅나무 15개체의 체세포배 유도 및 식물체 재분화에 미치는 유전자형의 효과)

  • 문흥규;홍용표;김용욱;이재순
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.3
    • /
    • pp.129-134
    • /
    • 2001
  • Winter bud explants from 15 individual angelica tree (Aralia elata) were cultured in vitro to find out optimal conditions for somatic embryo induction as well as plant regeneration. Calli are induced and grown on MS medium supplemented with 1.0 mg/L 2,4-D for 4 weeks and subcultured on a half-strength MS medium without phytohormones to induce somatic embryos. Inter-simple sequence repeat (I-SSR) markers were analyzed with total DNAs extracted from the trees. Genotype effects on somatic embryo induction were examined by cluster analysis. Callus induction rate varied from 58.5 to 100% among the genotypes. Somatic embryo induction rate also greatly varied from 0 to 100% among the genotypes. There was a significant difference in somatic embryo induction rate even among the individual trees that showed close genetic relationships each other. This suggested that somatic embryo induction rate in Aralia elata be influenced by a few major specific genes rather than whole genomic similarity among individual trees. Four individuals of Ulneong-7, Cheju-1, Shingu and China, which are recalcitrant to somatic embryo induction, turned out to have a close genetic relationship, suggesting that both physiological and genetic factors affect somatic embryo induction. The results suggest that genotype selection be the most important factor to achieve an efficient propagation, although cultural optimization through medium and explant manipulation may also play crucial roles in somatic embryogensis as well as plant regeneration of these species.

  • PDF

Tooth modification of helical gears for minimization of vibration and noise

  • Chong, Tae-Hyong;Myong, Jae-Hyong;Kim, Ki-Tae
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.5-11
    • /
    • 2001
  • Vibration and noise of gears is doc to the transmission error and the vibration exciting force caused by the periodically alternating tooth stiffness. Transmission error is the rotation delay between driving and driven gear caused by manufacturing error, alignment error in assembly and so on. Tooth stiffness changes with the proceeding mesh of teeth. The purpose of this study is to develop how to calculate simultaneously the optimum amounts of tooth profile modification. end relief and crowning by minimizing the vibration exciting force of helical gears. We estimate the vibration exciting force by the meshing analysis of gears. Formulated constraints of this problem consist of contact ratio and strengths of gear teeth such as tooth bending strength, surface durability, and scoring. ADS(Automated Design Synthesis) is used as an optimization tool. We also investigate the relation between the aspect ratio and the optimum values of tooth modification. The proposed method can calculate the optimum amount of tooth modification automatically and is expected to be practically useful to resolve the problem of vibration of helical gears.

  • PDF

Optimization of Chromatographic Separation of Lysozyme from Homogenate of Hen Egg White by Comparison of Breakthrough Behavior (파과분석(Breakthrough behavior) 비교에 의한 난백으로부터 라이소자임 크로마토그래피 분리 최적화)

  • 김원경;정봉현
    • KSBB Journal
    • /
    • v.14 no.3
    • /
    • pp.279-283
    • /
    • 1999
  • We have compared the breakthrough behavior of lysozyme contained in fresh han egg white on various cation exchagers, and the adsorbent, known by the trade name Cellufine C-200 (Amicon), has shown the best performance. The effects of ion strength, pH, and linear flow rate on the breakthrough behavior were examined using the Cellufine C-200 adsorbent. The optimal conductivity, pH and linear flow rate were determined from the breakthrough behavior and found to be 2.75 mS/cm, 7.0, and 0.635 cm/min, respectively.

  • PDF

Structural Analysis on the Heavy Duty Diesel Engine and Optimization for Bearing Cap (대형 디젤엔진의 구조응력해석 및 베어링 캡의 최적설계)

  • Lee, Jae-Ok;Lee, Young-Shin;Lee, Hyun-Seung;Kim, Jae-Hoon;Jun, Joon-Tak;Kim, Chul-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.402-410
    • /
    • 2008
  • The heavy duty diesel engine must have a large output for maintaining excellent mobility. In this study, a three dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis. The FE model of the heavy duty diesel engine main parts consisting with four half cylinder was selected. The heavy duty diesel engine parts includes with cylinder block, cylinder head, gasket, liner, bearing cap, bearing and bolts. The loading conditions of engine were pre-fit load, assembly load, and gas load. As the results of structural analysis, because the stress values of cylinder block and bearing cap did not exceed the basic design can be satisfied. But on the part which contacts with cylinder block and bearing cap the stress value exceeds the allowable strength of material. In order to decrease the stress at that part, it was optimized with parametric study.

The Effectiveness Analysis of Multistatic Sonar Network Via Detection Peformance (표적탐지성능을 이용한 다중상태 소나의 효과도 분석)

  • Jang, Jae-Hoon;Ku, Bon-Hwa;Hong, Woo-Young;Kim, In-Ik;Ko, Han-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.24-32
    • /
    • 2006
  • This paper is to analyze the effectiveness of multistatic sonar network based on detection performance. The multistatic sonar network is a distributed detection system that places a source and multi-receivers apart. So it needs a detection technique that relates to decision rule and optimization of sonar system to improve the detection performance. For this we propose a data fusion procedure using Bayesian decision and optimal sensor arrangement by optimizing a bistatic sonar. Also, to analyze the detection performance effectively, we propose the environmental model that simulates a propagation loss and target strength suitable for multistatic sonar networks in real surroundings. The effectiveness analysis on the multistatic sonar network confirms itself as a promising tool for effective allocation of detection resources in multistatic sonar system.

Optimization of Staphylokinase Production in Bacillus subtilis Using Inducible and Constitutive Promoters

  • Kim, June-Hyung;Wong, Sui-Lam;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.3
    • /
    • pp.167-172
    • /
    • 2001
  • Staphylokinase (SAK) was produced in B. subtilis using two different promoter systems, i.e. the P43 and sacB promoters. To maximize SAK expression in B. subtilis, fermentation control strategies for each promoter were examined. SAK, under P43, a vegetative promoter transcribed mainly by $\sigma$(sup)B containing RNA polymerase, was overexpressed at low dissolved oxygen (D.O.) levels, suggesting that the sigB operon is somewhat affected by the energy charge of the cells. The expression of SAK at the 10% D.O. level was three times higher than that at the 50% D.O. level. In the case of sacB, a sucrose-inducible promoter, sucrose feeding was used to control the induction period and induction strength. Since sucrose is hydrolyzed by two sucrose hydrolyzing enzymes in the cell and culture broth, the control strategy was based on replenishing the loss of sucrose in the culture. With continuous feeding of sucrose, WB700 (pSAKBQ), which contains the SAK gene under sacB promoter, yielded ca. 35% more SAK than the batch culture. These results present efficient promoter-dependent control strategies in B. subtilis host system for foreign protein expression.

  • PDF

Optimum Design of the Mover for LMTT considering the Elastic Characteristic of the Linear Motor (리니어 모터의 전기적 특성을 고려한 LMTT용 이동체의 최적설계)

  • An T.W.;Han K.J.;Han D.S.;Lee S.W.;Lee K.M.;Lee J.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.399-400
    • /
    • 2006
  • LMTT(Linear Motor based Transfer Technology) is a new type of transfer system used in the maritime container terminal fur the port automation, and largely consists of a controller, shuttle car, and rail. The shuttle car is divided into the frame part, the driving part, and wheels. In order to design this system, various researches on each part of it must be conducted. In this study, we dealt with the optimum design for the frame part of the shuttle car designed from previous studies on the strength of the frame with respect to the number of cross beams to minimize the weight of the shuttle car and to satisfy design criteria of cargo-handling systems in container terminal. For the optimization of the frame, thicknesses of each beam were adopted as design variables, the weight of the frame as objective function, and stress and deflection per unit length as constraint condition.

  • PDF

A Study on the Mechanical Properties of the Friction Welding with Solid Shaft of SM45C (SM45C 중실축의 마찰용접 기계적 특성에 관한 연구)

  • Koo, Keon Seop
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.932-937
    • /
    • 2012
  • In the presented study, SM45C carbon steel parts were joined by friction welding. The welding process was carried out under optimized conditions using statistical approach. The study of SM45C is conducted with various combinations of process parameters. Parameter optimization, microstructure and mechanical property correlation are the major contribution of the study. The welded joints were produced by varying spindle revolution speed, friction pressure, upset pressure and burn-off length. Tension tests were applied to welded parts to obtain the strength of the joints. Fracturs properties were additionally obtained experimentally under fluctuated tensile loads. Microstructures using microphotographs were examined in the weld interface and weld region and heat affected zone and base metal and flash zone of welded parts. Finally, Hardness variations in welding zone and base metal were also obtained. Through these tests, the optimum conditions of parameters for ${\phi}20$ SM45C in friction welding were obtained when the friction spindle revolution was 1,950 rpm, the friction pressures was 30 MPs, upset pressures was 50 MPs.

Sustainable retrofit design of RC frames evaluated for different seismic demand

  • Zerbin, Matteo;Aprile, Alessandra
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1337-1353
    • /
    • 2015
  • Seismic upgrading of existing structures is a technical and social issue aimed at risk reduction. Sustainable design is one of the most important challenges in any structural project. Nowadays, many retrofit strategies are feasible and several traditional and innovative options are available to engineers. Basically, the design strategy can lead to increase structural ductility, strength, or both of them, but also stiffness regulation and supplemental damping are possible strategies to reduce seismic vulnerability. Each design solution has different technical and economical performances. In this paper, four different design solutions are presented for the retrofit of an existing RC frame with poor concrete quality and inadequate reinforcement detailing. The considered solutions are based on FRP wrapping of the existing structural elements or alternatively on new RC shear walls introduction. This paper shows the comparison among the considered design strategies in order to select the suitable solution, which reaches the compromise between the obtained safety level and costs during the life-cycle of the building. Each solution is worked out by considering three different levels of seismic demand. The structural capacity of the considered retrofit solutions is assessed with nonlinear static analysis and the seismic performance is evaluated with the capacity spectrum method.