• Title/Summary/Keyword: Strength Method

Search Result 10,885, Processing Time 0.037 seconds

Experimental Study on Tensile Strength of Straight-Line Connection Using Sleeve for Indirect Method (간접활선용 압축 슬리브를 이용한 전선 직선접속에 대한 실험적 연구)

  • Kim, Sang-Bong;Kim, Kang-Sik;Oh, Gi-Dae;Song, Won-Keun;Keum, Ui-Yeon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.85-91
    • /
    • 2021
  • With the social atmosphere of respect for human life and the increasing interest in safety of field workers, research and development is underway in various ways to transform direct live method into indirect live method in the field of distribution. As part of this measure, it was necessary to convert electric pole and complex facilities work from machining power distribution to indirect live operation, and install a straight connecting sleeve that connects cut wires for by-pass method, but it failed to meet the tensile strength standard when constructing a sleeve constructed by direct method. In this paper, the design factors were derived based on the case of overseas similar sleeves and the tensile strength evaluation of each variable was performed, based on the analysis of these test results, the method for securing tensile strength of straight-line access sleeves for indirect running was presented.

A Study on the Simplified Method to Calculate the Compressive Strength of Welded Structures (용접 구조물 압축강도의 간이해석에 관한 연구)

  • 서승일
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.87-95
    • /
    • 2000
  • Residual stresses and deformations due to welding have effects on the strength of structures. In this paper, the compressive strength of basic welded structures is studied and the effects of the residual stresses and deformations on the compressive strength of beams, plates and shells are investigated,. Theoretical analysis for the basic structures is carried out and simplified methods to calculate the compressive strength are proposed. The proposed methods yield simple formulas to calculate the compressive strength, of which results are much helpful. The accuracy of the proposed method is revealed by comparison with experimental results.

  • PDF

Strength Method Using Pre-flexed Members for the Corner of Underground Box Structures under Additional Surface Load (추가 상재하중을 받는 지중박스구조물의 우각부에 대한 프리플렉스 부재를 이용한 보강공법)

  • Chung, Jee Seung;Lee, Jin Hyuk;Kim, Ki Am
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.102-108
    • /
    • 2016
  • This paper presents a new strength method of underground box structures under additional surface load. An L-bracing using pre-flexed steel member threads called the "Pre-flex strength method" is used to improve capacity of the RC box structure under earth pressure due to additional surface load. The pre-flexed steel member is fixed the top and bottom of the structure after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. 3 types of underground RC box structure were used; $2.0m{\times}2.0m$, $3.0m{\times}3.0m$ and $4.0m{\times}4.0m$. For the performance evaluation, structure analysis were performed on moment and shear resisting structures with and without pre-flex strength method. Numerical results confirmed that the proposed strength member system installed on underground RC box structures enhanced the strength capacity. The feasible region of the proposed pre-flex strength method in accordance with the earth pressure due to additional surface depth was evaluated.

Experimental Study on the Capping Properties of Concrete Compressive Strength (콘크리트 압축강도의 캐핑 특성에 관한 실험적 연구)

  • Joung Won Seoup;Kwon Ki Joo;Noh Jea Myoung;Choi Eui Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.145-148
    • /
    • 2004
  • The purpose is to prove the newly established 'UNBONDED CAPPING' method for Concrete Strength Tests. Day by day, concrete buildings and structure became high-rising and magnificently vast scheduled, as contributed from the development of improved equipments that suitable to specific construction works and high qualitied Admixture, the qualities of the concrete was highly improved. It is very important that the concrete strength tests and evaluation should be carried out in the manner that as soon as the concrete is placed so that dismantling form works can be done in time and that may enabling reducing construction period directly related with the costs of the project. However, the conventional capping method of concrete specimen requires more manpower and consuming times, As for the Sulfur capping, there may be incurred accidential fire and generation of Gas, what is more there stands limitation in precise evaluation of strength test results because of variation in capping method results may vary in concrete strength test results. Not necessarily emphasize, the compression strength of the concrete is the most valuable basic data essential to control the qualities of the concrete and that should be carried out accurately. in this study evaluation of the compressive strength test results comparing stabilized concrete capping method for Cement Paste capping, Sulfur-paste capping ,High Gypsum capping and recently flowing the Grinding with the UNBONDED CAPPING' method to provide reliable and economical concrete strength testing.

  • PDF

Concrete Strength Estimating at Early Ages by the Equivalent Age

  • Kim, Moo-Han;Nam, Jae-Hyun;Khil, Bae-Su
    • KCI Concrete Journal
    • /
    • v.14 no.2
    • /
    • pp.81-85
    • /
    • 2002
  • The strength development of concrete is influenced by temperature and cement type which greatly affect hydration degree of cement. There is not pertinent concrete strength management method in korea. There are several methods for estimating the in-place strength of concrete. One such method is the maturity concept. The maturity concept is based on the fact that concrete gains strength gradually as a result of chemical reactions between cement and water; and for a specific concrete mixture, strength at any age and at normal conditions is related to the degree of hydration. The rate of hydration and, therefore, strength development of a given concrete will be a function of its temperature. Thus, strength of concrete depends on its time-temperature history. The goals of the present study are to investigate a relationship between strength of high-strength concrete and maturity that is expressed as a function of an integral of the curing period and temperature and predict strength of concrete.

  • PDF

A Study on Development of Strength Prediction Model for Construction Field by Maturity Method (적산온도 기법을 활용한 건설생산현장에서의 강도예측모델 개발에 관한 연구)

  • Kim, Moo-Han;Nam, Jae-Hyun;Khil, Bae-Su;Choi, Se-Jin;Jang, Jong-Ho;Kang, Yong-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.177-182
    • /
    • 2002
  • The purpose of this study is to develope the strength prediction model by Maturity Method. A maturity function is a mathematical expression to account for the combined effects of time and temperature on the strength development of a cementious mixture. The method of equivalent ages is to use Arrhenius equation which indicates the influence of curing temperature on the initial hydration ratio of cement. For the experimental factors of this study, we selected the concrete mixing of W/C ratio 45, 50, 55 and 60% and curing temperature 5, 10, 20 and $30^{\circ}C$. And we compare and evaluate with logistic model that is existing strength prediction model, because we have to verify adaption possibility of new strength prediction model which is proposed by maturity method. As the results, it is found that investigation of the activation energy that are used to calculate equivalent age is necessary, and new strength prediction model was proved to be more accurate in the strength prediction than logistic model in the early age. Moreover, the use of new model was more reasonable because it has low SSE and high decisive factor.

A Study on Application of Non-Destructive Equation for the Estimation of Concrete Strength (콘크리트의 압축강도 추정을 위한 비파괴시험식의 활용성 검토에 관한 연구)

  • Kim, Moo-Han;Kwon, Young-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.129-136
    • /
    • 1999
  • In this paper, the new non-destructive equation will be proposed and evaluated in comparison to the other foreign's non-destructive equation. Through the comparisons cores strength of mock structure with compressive strength obtained from new non-destructive equation ; rebound hammer, ultra-sonic pulse velocity and combined method, it will be analyzed about application of non-destructive equation. The results are following. The new non-destructive equations follow ; (1) $F_c=9.5R{\cdot}N+62.5$ (2) $F_c=243Vp-739$ (3) $F_c=8.1R_o+205.3V_p-802$ where, $F_c$ : Compressive Strength, $R_o$ : Rebound Number. $V_p$ : Ultra-Sonic Pulse Velocity Trough the result of mock structure test, the combined method is superior to rebound method and ultra-sonic pulse velocity method in the estimation of concrete strength. In order to apply the non-destructive equation of concrete strength to the structures, it is necessary that we should be made process study on the non-destructive equation for estimation of concrete strength in the range, time and strength of application under long-term.

  • PDF

Strength Evaluation of Friction Welded SUH35/SUB3 Considering Stress Singularity (응력특이성을 고려한 SUH35/SUH3 마찰용접재의 강도평가)

  • Chung, Nam-Yong;Park, Chul-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.59-67
    • /
    • 2006
  • Recently, application of friction welded SUH35/SUH3 is increasing in the manufacturing process of automotive engine valves For securing its reliability and a reasonable strength evaluation method, it is necessary to assess stress singularity under the residual stress condition on the friction welded interface between dissimilar materials. In this paper, strength evaluation method of friction welded materials was investigated by boundary element method and static tensile testing. An advanced method of quantitative strength evaluation for SUH35/SUH3 friction welded material is to be suggested by establishing fracture criterion by using stress singularity factors.

Application on the Prediction Model of the Compressive Strength of Concrete by Maturity Method (적산온도에 의한 콘크리트 압축강도 추정모델의 적용성 검토)

  • Khil, Bae-Su;Kwon, Young-Jin;Nam, Jae-Hyun;Kim, Moo-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.177-183
    • /
    • 1999
  • The major object of this study is to investigate experimentally the experimental equation by the non-destructive testing methods of ultrasonic pulse velocity, rebound number, combined method of ultrasonic pulse velocity and rebound number, maturity which are applicable to the evaluation of compressive strength of concrete at early ages. Also test result of mix are statistically analyzed to infer the correlation coefficient between the maturity and the compressive strength of concrete. The results show good application of Logistic curve for estimating strength development under various curing temperature. The relation between ultrasonic pulse velocity, rebound number, combined method of ultrasonic pulse velocity and rebound number and compressive strength of concrete have low correlation coefficient, but maturity method show good correlation coefficient.

  • PDF

Evaluation of Bond Strength Properties with Changing the Aspect Ratio and Temperature of Concrete (콘크리트의 형상비 및 온도변화에 따른 부착강도 특성평가)

  • Kim, Hyun Seok;Jung, Won Kyong;Oh, Han Jin;Park, Jun Young;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.19-26
    • /
    • 2018
  • PURPOSES : The main purpose of this study is suggest of field bond strength evaluation method for more objective evaluation method through Evaluation of Bond Strength Properties with changing aspect ratio and temperature. METHODS : The evaluation is laboratory bond strength test. Using the core machine, the pull-off test method ; the bond strength test of interface layer the universal testing machine. RESULTS : As a result of the laboratory bond strength evaluation, it was verified that the bond strength by aspect ratio decreases linearly with increasing aspect ratio and the bond strength properties by temperature change existed at high and low temperature condition relative to odinary temperature condition. CONCLUSIONS : According to the results of laboratory bond strength evaluation, the field bond strength evaluation results suggest applying the proposed correction factor (0.8, 1.0, 1.4, 1.9) according to aspect ratio(0.5, 0.1, 1.5, 2.0), For more objective evaluation of the bond strength, it is analyzed that the evaluation value is within $6{\sim}32^{\circ}C$ and the result can be obtained within 5% of the coefficient of variation.