• Title/Summary/Keyword: Strength Experiment

Search Result 2,880, Processing Time 0.034 seconds

Experimental Study on Generating mechanism of The Ground Subsidence of Due to Damaged Waters supply Pipe (상수관로 파손으로 인한 지반함몰 발생메카니즘에 관한 실험적 연구)

  • Kim, Youngho;Kim, Joo-Bong;Kim, Dowon;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.139-148
    • /
    • 2017
  • Ground subsidence caused by damaged water pipe and sewer is recently increasing due to the aging of city and pipeline in many city. Although many recent studies have verified characteristics of ground subsidence due to wastewater pipe breakdown, research about characteristics of ground subsidence due to water pipe is insignificant. subsidence due to water pipe is insignificant. This study aims to identify the ground failure mechanism caused by water and sewer pipe breakdown. Accordingly, we conducted an indoor model experiment to verify characteristics of ground subsidence considering characteristics of ground and ground failure. The water pipe pressure and velocity head was considered to find out ground subsidence mechanism. Also comparative analysis is conducted by analyzing relative density and fine-grain content considering embedded condition of water pipe. When the relative density and seepage pressure is low, small scale ground subsidence can occur, but when the conditions are opposite, ground subsidence occur in large scale and expands to ground level over time. Furthermore, it is acknowledgeable that ground cavity that is formed after soil run off due to seepage in deep earth, maintains steady strength and stays on the ground level for long period.

GEOTECHNICAL DESIGNS OF THE SHIP IMPACT PROTECTION SYSTEM FOR INCHEON BRIDGE

  • Choi, Sung-Min;Oh, Seung-Tak;Park, Sang-Il;Kim, Sung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.72-77
    • /
    • 2010
  • The Incheon Bridge, which was opened to the traffic in October 2009, is an 18.4 km long sea-crossing bridge connecting the Incheon International Airport with the expressway networks around the Seoul metropolitan area by way of Songdo District of Incheon City. This bridge is an integration of several special featured bridges and the major part of the bridge consists of cable-stayed spans. This marine cable-stayed bridge has a main span of 800 m wide to cross the vessel navigation channel in and out of the Incheon Port. In waterways where ship collision is anticipated, bridges shall be designed to resist ship impact forces, and/or, adequately protected by ship impact protection (SIP) systems. For the Incheon Bridge, large diameter circular dolphins as SIP were made at 44 locations of the both side of the main span around the piers of the cable-stayed bridge span. This world's largest dolphin-type SIP system protects the bridge against the collision with 100,000 DWT tanker navigating the channel with speed of 10 knots. Diameter of the dolphin is up to 25 m. Vessel collision risk was assessed by probability based analysis with AASHTO Method-II. The annual frequency of bridge collapse through the risk analysis for 71,370 cases of the impact scenario was less than $0.5{\times}10^{-4}$ and satisfies design requirements. The dolphin is the circular sheet pile structure filled with crushed rock and closed at the top with a robust concrete cap. The structural design was performed with numerical analyses of which constitutional model was verified by the physical model experiment using the geo-centrifugal testing equipment. 3D non-linear finite element models were used to analyze the structural response and energy-dissipating capability of dolphins which were deeply embedded in the seabed. The dolphin structure secures external stability and internal stability for ordinary loads such as wave and current pressure. Considering failure mechanism, stability assessment was performed for the strength limit state and service limit state of the dolphins. The friction angle of the crushed stone as a filling material was reduced to $38^{\circ}$ considering the possibility of contracting behavior as the impact.

  • PDF

An Experimental Study on the Freeze-Thaw Resistance of Concrete Incorporating Waste Foundry Sand (폐주물사를 혼입한 콘크리트의 동결-융해 저항성에 관한 실험적 연구)

  • 윤경구;이주형;홍창우;박제선
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.153-161
    • /
    • 1998
  • Concrete structures has been deteriorated by and freezing the thawing due to temperature gap. This study was conducted to evaluate durability of concrete which are increasingly demanded recently. Therefore the research of durability must be executed for application of waste foundry sand concrete real structures. Concrete durability properties incorporating waste foundry sand was performed with the variable of W/C ratio. Sand/Waste foundry sand ratio and Air entrainment-Non air entrainment. Cylinder specimens were made and subjected to freezing and thawing cycle at -18$^{\circ}C$ and 4$^{\circ}C$. Dynamic modulus of elasticity were evaluated as F/T cycle increase. The results show that strength of concrete is increased the W/C ratio decrease, the Sand/Waste foundry sand ratio increases when the concrete contains AE agent and decreasing W/C ratio and AE concrete makes improved resistance of freezing and thawing improved. Especially, resistance of freezing and thawing is improved by Fine aggregate/Waste foundry sand ratio which is 50%, 25%, 0% in a row. Therefore it is turn out the waste foundry sand could be applied to concrete from the experiment.

Flexural Experiment of PSC-Steel Mixed Girders and Evaluation for Analyses on Tangentional Stiffness of Connection (프리스트레스트 콘크리트-강 혼합거더의 휨 실험 및 경계면 수평계수 분석)

  • Kim, Kwang-Soo;Jung, Kwang-Hoe;Sim, Chung-Wook;Yoo, Sung-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.231-237
    • /
    • 2008
  • This study was performed to evaluate joint behavior of prestressed concrete(PSC)-steel mixed girders through the flexural test of 14 beams according to embedded length, amount of reinforcing steel, stud arrangement, and prestressing force. All test beams were failed by turns of desertion of reinforcing steel, stud, and steel plate. From test results, prestressing force was more effective on performance of connection than stud arrangement and reinforcing steel. And the spacing of stud is also more effective than embedding length. This paper also presented 3D nonlinear analysis considering the slip of composite section as well as the static load tests of PSC-steel mixed girders. According to the slip modulus, the nonlinear analysis showed that the behavior of hybrid girders could be divided into three parts as full-composite, partial-composite and non-composite. However, the experimental results showed that the PSC-steel hybrid girders with shear connectors took the part of partial composite action in ultimate load stage. In addition, it was founded that stud shear connectors and welded reinforcements were contributed to improve the ultimate strength of hybrid girders for about 20%.

An Experimental Study on the Effect of Reduced Slag and Gypsum on Concrete at Low Temperature(-5℃) (저온(-5℃)에서의 환원슬래그 및 석고가 콘크리트에 미치는 영향에 관한 실험적 연구)

  • Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Min, Tae-Beom;An, Dong-Hee;Choi, Si-Hyun;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.279-285
    • /
    • 2017
  • In this study, the development of concrete preventing initial frost damage and durability about that were evaluated by using anti-aging agent and admixture(reduced slag). As a result of experiment, initial hydration heat was increased by $C_{12}A_7$ of reduced slag components but it was not effective to development of strength. Also fluidity decreased with increasing replacement of reduced slag. This suggested that fluidity was low by rapid setting due to absent of gypsum in reduced slag components. In case of CR2G specimen that added 4% gypsum, the flow ability was higher than plain. It is considered that concrete developed using reduced slag should use $SO_3$. Result of durability experiments, the durability decreased with increasing replacement amount of reduced slag.

Simultaneous Analyses for Trace Multi-Odorous and Volatile Organic Compounds in Gas using a Triple-bed Adsorbent Tube (Triple-bed Adsorbent Tube를 이용한 가스상 극미량 복합 악취 및 휘발성 유기화합물의 동시 분석)

  • Seo, Yong Soo;Lee, Jea Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.244-252
    • /
    • 2010
  • The objective of this study is to assess feasibility of simultaneous analysis for trace multi-components odorous and volatile organic compounds using a Triple-bed adsorbent tube with a thermal desorber and GC-MS. Triple-bed adsorbent tube is 3 bed packed Tenax-TA with small amount of Carbopack B and Carbosieve SIII in order of adsorption strength in a tube. The operating conditions of GC-MS was possibly able to and effectively detect high volatile and low molecular weight compounds at the mass range of 20~350 m/z using a below impurity 1ppm of Helium carrier gas, of which quantitatively analyzed by target ion extracts. According to the experiment, $C_1{\sim}C_5$ of 14 components; sulfur containing compounds(2), ketones(2), alcohols(4) and aldehydes(6) were simultaneously analyzed with recoveries of 99%, and good repeatability and linearity. High volatile and low molecular weight compounds such as methyl alcohol and acetaldehyde can be safely quantified with high recovery at a condition of 50mL/min of flow rate, below 2L of adsorption volume, and 45% of relative humidity. Target ion extract can also simultaneously quantify multicomponents with odorous and volatile organic compounds in an occasion of piled up two peaks.

Effect of Additional Elements on Efficiency of Al and Zn Sacrificial Anode for Naval Vessels (함정용 Al 및 Zn 희생양극의 효율에 미치는 첨가원소 영향)

  • Choi, Woo-Suk;Park, Kyung-Chul;Kim, Byeong-Ho
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.277-283
    • /
    • 2015
  • MS(Mild Steel), HTS(High Tensile Steel), HYS(High Yield Steel), AL(Aluminum Alloy) and Composite Materials are used for vessels. Steel Materials are mostly used for vessels because body of a ship have to perform the basic functions such as watertight, preserving the strength and supporting the equipments. The vessels primarily carry out a mission at ocean, so that body of a ship is necessarily rusted. There are several methods to protect the corrosion of vessels such as painting, SACP(sacrificial anode cathodic protection) and ICCP(impressed current cathodic protection). For the sacrificial anode cathodic protection, Al and Zn alloys are normally used. Heavy metals are added to the Al and Zn Alloys for improving the corrosion properties but they are so harmful to the human and environment. Therefore, the use of these heavy metals is strictly regulated in the world. In this paper, Al and Zn Alloys are made by adding the trace elements(Ma, Ca, Ce and Sn) which is not harmful to the human and environment. SEM, XRD, Potentiodynamic Polarization test and Current Efficiency test are conducted for evaluation of Al and Zn Alloys. As a result of the experiment, Al-3Zn-0.6Sn and Zn-3Sn Alloys are more efficient than other Alloys.

Application of Granulated Coal Ash for Remediation of Coastal Sediment (연안 저질 개선을 위한 석탄회 조립물의 활용)

  • Kim, Kyunghoi;Lee, In-Cheol;Ryu, Sung-Hoon;Saito, Tadashi;Hibino, Tadashi
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper aims to explain the safety assessment and remediation mechanism of Granulated Coal Ash (GCA) as a material for the remediation of coastal sediments and to evaluate the improvement of the sediment in Kaita Bay, where GCA was applied. The concentrations of heavy metal contained in GCA and the dissolved amounts of heavy metal from GCA satisfied the criteria for soil and water pollution in Japan. The mechanisms on the remediation of coastal sediments using GCA is summarized as follows; (1) removal of phosphate and hydrogen sulfide (2) neutralization of acidic sediment (3) oxidation of reductive sediment (4) increase of water permeability (5) increase of soil strength (6) material for a base of seagrass. From the results obtained from the field experiment carried out in Kaita Bay, it was clarified that GCA is a promizing material for remediation of coastal sediment. This remediation technology can contribute to promote waste reduction in society and to decrease cost of coastal sediment remediation by applying GCA in other polluted coastal areas.

Adsorption Characteristics of Aqueous Ammonium Using Rice hull-Derived Biochar (왕겨 바이오차의 암모늄태 질소(NH4-N) 흡착 특성)

  • Choi, Yong-Su;Shin, Joung-Du;Lee, Sun-Il;Kim, Sung-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.155-160
    • /
    • 2015
  • BACKGROUND: Objective of this study was to investigate adsorption characteristics of $NH_4-N$ to biochar produced from rice hull in respective to mitigation of greenhouse gases. METHODS AND RESULTS: $NH_4-N$ concentration was analyzed by UV spectrophotometer. For adsorption experiment of $NH_4-N$ to biochar, input amount of biochar was varied from 0.4 to 10 g/L with 30 mg/L $NH_4-N$ solution. Its adsorption characteristic was investigated with application of Langmuir isotherm. Adsorption amount and removal rates of $NH_4-N$ were decreased at 53.9% and increased at 20.2% with 10 g/L compared to 0.4 g/L, respectively. The sorption of $NH_4-N$ to biochar produced from rice hull was fitted well by a Langmuir model. The largest adsorption amount of $NH_4-N$ ($q_m$) and binding strength constant (b) were calculated as 0.4980 mg/g, and 0.0249 L/mg, respectively. It was observed that dimensionless constant ($R_L$) was 0.58. CONCLUSION: It was indicated that biochar produced from rice hull is favorably absorbed $NH_4-N$, because this value lie within 0< $R_L$ <1.

A Study on Wear Characteristics of Cutting Tools in a Titanium Roughing Cut Machining (티타늄 황삭가공에 있어서 절삭공구의 마모 특성에 관한 연구)

  • Bae, Myung-whan;Jung, Hwa;Park, Hyeong-yeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2016
  • The application of titanium has been gradually rising because the utilizing ranges for low weight and high strength are rapidly increased by the need for improving the fuel economy in production industries such as the aviation and automotive in recent. The purpose in this study is to investigate the appropriate cutting conditions on the life of flat and round end mills by measuring the maximum cutting temperature relative to the machining time, and calculating the wear rates of cutting tool with the spindle speed and feed rate of vertical machining center as a parameter in the titanium roughing cut machining which is widely used in critical parts of aircraft, cars, etc. When the wetted roughing cut machining of titanium with a soluble cutting oil is conducted by the flat and round end mills, the maximum cutting temperatures for a variety of spindle speed and feed rate are measured at ten-minute intervals during 60 minutes by an infrared thermometer, and the wear rates of cutting tool are calculated by the weight ratios based on tool wear before and after the experiment. It is found that the maximum cutting temperature and the wear rates of cutting tool are raised as the cutting amount per tool edge is increased with the rise of feed rate, in this experimental range, and as the frictional area due to the rise of contacting friction numbers between tool and specimen is increased with the rises of cutting time and spindle speed. In addition, the increasing rate of maximum cutting temperature in the flat and round end mills are the highest for the cutting time from 50 to 60 minutes, and the wear rate of cutting tool in the flat end mill is 1.14 to 1.55 times higher than that in the round end mill for all experimental conditions.