• Title/Summary/Keyword: Strength Estimation

Search Result 1,381, Processing Time 0.026 seconds

Design of Unsupported Rock Pillars in a Room-and-Pillar Underground Structure by the Tributary Area Method and the Pillar Strength Estimation (지류론과 암주 강도의 추정에 의한 주방식 지하구조의 무지보 암주 설계)

  • Chang, Soo-Ho;Lee, Chulho;Choi, Soon-Wook;Hur, Jinsuk;Hwang, Jedon
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.335-343
    • /
    • 2014
  • Room-and-pillar mining method is one of the most popular underground mining method in the world. If the room-and-pillar mining method is able to be adopted in civil works, it would be highly probable to reduce underground construction costs and to expand a underground structure in use. Therefore, this study aims to analyze the design procedure of unsupported rock pillars which are indispensable to ensure the stability of a room-and-pillar underground structure. Parametric studies on their key design parameters are also carried out for 125 different kinds of design conditions. From the study, the width of a rock pillar is found to show a linear relationship with its corresponding safety factor. The safety factor of a unsupported rock pillar decreased drastically like a negative exponential function as the ratio of room width to pillar width increases in the same rock strength condition. Based on the parametric studies, a design chart to simply evaluate the geometric design parameters of a unsupported rock pillar satisfying a design safety factor is also proposed in this study.

Suggestion of the Settlement Estimation Method for Granular Compaction files Considering Lateral Deformations (횡방향 변형을 고려한 조립토 다짐말뚝의 침하량 평가기법 제안)

  • Hwang Jung-Soon;Kim Hong-Taek;Kim Seung-Wook;Koh Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • In cases of the loosely accumulated ground and soft clayey soils, the settlement criterion usually governs in evaluating the stability of structures. The settlement is also a dominant factor to control the design of granular compaction piles mainly applied to the reinforcement of foundation structures in soft ground. In the previous studies, settlement behaviors of granular compaction piles have generally been analyzed with an evaluation of the settlement reduction factor based on the load-sharing ratio and the replacement ratio. In this approach, however, since the reinforced ground with granular compaction piles is simplified as the composite ground, only the difference of a relative vertical strength between piles and soils is taken into account without reflecting lateral behaviors of granular compaction piles. In the present study, the method of estimating the settlement of granular compaction piles is proposed by synthetically considering a vertical strength of the ground, lateral behaviors of granular compaction piles, the strength of pile materials, a pile diameter, and an installation distance of the pile. Further, far the verification of a validity of the proposed method, predicted settlements are compared with results from previous studies. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.

Estimation to the Strength of Basalt in Jeju Island according to Rock Failure Criterions (암석의 파괴규준에 따른 제주도 현무암의 강도 산정)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.153-163
    • /
    • 2009
  • In this study, a series of triaxial tests on Jeju basalt were carried out and then rock strength parameters were estimated by the Mohr-Coulomb failure criterion and the Hoek-Brown failure criterion using the test results. The characteristics of both failure criterions were investigated through comparing the estimated rock strength parameters. As the result of the Mohr-Coulomb criterion, the cohesions and the internal friction angles are determined as 5.35 MPa and $50.25^{\circ}$ of Pyoseonri basalt, 16.99 MPa and $60.66^{\circ}$ of Trachy-basalt, and 2.33 MPa and $37.05^{\circ}$ of Scoria, respectively. The cohesions and internal friction angles were estimated by the Hoek-Brown failure criterion in the basis of the results of regression analysis. The cohesions and the internal friction angles are determined as 4.77 MPa and $52.47^{\circ}$ of Pyoseonri basalt, 14.69 MPa and $60.70^{\circ}$ of Trachy-basalt, and 2.22 MPa and $47.60^{\circ}$ of Scoria, respectively. As the result of comparison between the Mohr-Coulomb failure criterion and the failure envelope predicted by the Hoek-Brown criterion, the cohesion estimated by the Hoek-Brown criterion is usually lower than that obtained from the Mohr-Coulomb criterion, whereas the friction angle estimated by the Hoek-Brown criterion is higher than that obtained from the Mohr-Coulomb criterion.

Consumer's Sensory Evaluation of Specialty Grade Coffee during Storage (저장 기간에 따른 스페셜티 등급 커피의 소비자 관능평가)

  • Kwon, Dae-Joong;Lee, Min-June;Park, Ok-Jin
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.1033-1038
    • /
    • 2012
  • This study was done to provide basic information about the storage and distribution of specialty grade coffee of which the market will be expanded through customer sensory evaluation according to the storage period of specialty grade coffee by the SCAA classified method with consideration to defective beans and scent. The specialty grade coffee sample of this study was extracted on day 1, day 14, and day 28. The water content showed a significant reduction on the 28th storage day and there was no pH change according to the storage period. Color degree was brightened according to the preservation period before and after grinding but there was no significant difference. The panels for sensory evaluation considered of 24 university. The sensory evaluation consist of aroma, bitterness, and astringency, acidity, aftertaste, overall satisfaction, and items for strength estimation consist of aroma, acidity and bitterness. The sensory evaluation was expressed by applying a 5 point Likert scale. The results showed that as the storage period increased so too did the aroma and the strength of bitterness. Preference was the highest on day 1 in every items except aroma and astrigency. However on day 14 and day 28, most of the sensory evaluation became low and then became high, which was inconsistent. Male students were not consistent in their evaluation according to the preservation period, but female students rated aroma and bitterness the lowest on preservation period day 1 and they prefer after a storage period of 1 day in regards to the entire degree of satisfaction including sour test. astrigency and aftertaste. The analysis of visiting frequency for coffee shops used demonstrated that the longer the preservation period, the lower the preference but was not significant in the case of involving a little frequency group. The group that did not like Americano coffee evaluated that the longer the preservation period, the lower the preference based on Americano coffee preference analysis. There was no consistency between the storage period day 14 and day 28 in strength and preference, but preference for storage period day 1 was high in every group, which means that the quality of coffee is affected by the preservation period.

Specimen Size Effect in Estimation of Rut Resistance based on Deformation Strength (공시체 크기가 변형강도를 이용한 소성변형 추정에 미치는 영향)

  • Lee, Moon-Sup;Choi, Sun-Ju;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.1-13
    • /
    • 2004
  • This study dealt with size effect of specimen in measuring deformation strength and estimating rut resistance of asphalt concretes under static loading using Kim test. Two aggregates, a normal asphalt (pen 60-80) and 6 polymer-modified asphalt (PMA) binders were used for preparation of 14 dense-graded mixtures. Mixtures were prepared based on optimum asphalt content by Marshall compactor (S= 10cm) and gyratory compactor (S= 15cm) for Kim test and for wheel tracking test. In statistical analysis by general linear model (GLM) procedure of SAS, the diameter of specimen was found not to be a significant factor that affect the Kim test result. Therefore, it was found that either loom-diameter or 15cm-diameter of specimen gave no significant difference in deformation strength ($K_D$) values in Kim test for any aggregate mixture. However, the thickness of specimen was found to be a significant factor in determining $K_D$. It is estimated that $K_D$ is a function of y, vertical deformation, and y has something to do with thickness of specimen. Therefore, it is suggested that the thickness of specimen should not be higher than 6.6cm, and the correction factor depending on the thickness value should be developed in the future study.

  • PDF

A Study on the Characteristics of High-Tension Bolted Joints' Behavior due to Surface Condition (표면상태에 따른 고장력볼트 마찰이음부의 거동특성에 관한 연구)

  • Cho, Sun Kyu;Hong, Sung Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.421-430
    • /
    • 1997
  • In this study, the static and the fatigue tests were performed with high tension bolted joints, of which the surfaces were spread with inorganic zinc-primer after shot-blast, and milling surface, and steel-natural surface, difference of friction surface condition were examined by comparing the esults of tests. From the result of synthetical investigation of this study. it is proper that using the torque management method in order to introduce design axial force to blots, and the provision of specifications that initial axial forces must be 110% of design axial forces is proper. Decreasing ratio of axial forces to initial force is proportional to common lorgarithms of time progress, it converge constant value after 20 hours, and decreasing ratio is little related to the roughness of friction surface. Sliding coefficient of milling, spreading inorganic zinc-primer, just producting is great in order and sliding forces are dependent on the applied axial forces, but if the applied axial forces are great, sliding coefficient become small by a loss of roughness. So it is confirmed that relation between the applied axial forces and the sliding forces are not proportional linearly. From the result of estimation on fatigue strength, all specimens satisfy the specifications with B-grade and milling surface is lower than the others about 14% in fatigue strength because in milling surface lose the function of friction-types joints at lower number of cycles. From the result of eximination for the distribution area of compressive force, friction area near to inside bolt is wider in the direction of stress than near to outside. It is guessed that this situation occurs because outside bolts firstly change from the friction connection to the bearing connection.

  • PDF

Comparison of Longitudinal Wave Velocity in Concrete by Ultrasonic Pulse Velocity Method and Impact-Echo Method (초음파 속도법과 충격반향기법에 의한 콘크리트의 종파 속도 비교)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.98-106
    • /
    • 2003
  • Nondestructive test (NDT) provides much information on concrete without damage of structural functions. Of NDT methods, elastic wave propagation methods, such as ultrasonic pulse velocity (UPV) method and impact-echo (IE) method, have been successfully used to estimate the strength, elastic modulus, and Poisson's ratio of concrete as well as to detect the internal microstructural change and defects. In this study, the concretes with water-binder ratio ranging from 0.27 to 0.50 and fly ash content of 20% were made and then their longitudinal wave velocities were measured by UPV and IE method, respectively. Test results showed that the UPV is greater than the longitudinal wave velocity measured by the If method, i.e., rod-wave velocity obtained from the same concrete cylinder. It was found that the difference between the two types of velocities decreased with increasing the ages of concrete and strength level. Moreover, for the empirical formula, the dynamic Poisson's ratio, static and dynamic moduli of elasticity, and velocity-strength relationship were determined. It was observed that the Poisson's ratio and the modulus of elasticity determined by the dynamic method are greater than those determined by the static test. Consequently, for the more accurate estimation of concrete properties using the elastic wave velocities, the characteristics of these velocities should be understood.

Estimation on Filling Performance of Thixotropic Grout for Increasing Front-Water Depth of Gravity-Type Quay Wall (중력식 안벽 구조물의 증심 시공을 위한 가소성 그라우트의 충진성능 평가)

  • Jang, Kyong-Pil;Ryu, Yong-Sun;Kwon, Seung-Hee;Han, Woon-Woo;Oh, Myong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.169-177
    • /
    • 2017
  • Recently, as the size of transportation vessels has increased, there is a growing need for securing the front-water depths of existing port facilities. The method of deepening front-water depth is securing the depth of the port facility, and it is reinforced by grouting after excavating the rubble-mound to the required depth. The purpose of this study is to investigate the reinforcing performance and filling performance of thixotropic grout as a grouting material for reinforcing rubble-mound. Compressive strength tests were carried out for two types of thixotropic grout, and 5 specimens with a diameter of 400 mm and a height of 530 mm were manufactured and evaluated for filling performance. The required strength of reinforced rubble-mound required to ensure the safety of the structure is 6 MPa. All the thixotropic grouts used in this study were found to satisfy the required strength over 9 MPa at 7 days of age. As a result of visual observation of filling state of the filling performance test specimens, it was confirmed that the thixotropic grout was well filled up to the desired fillet height.

Estimation of Allowable Drop Height for Oriental Pears by Impact Tests (충격시험에 따른 배의 허용낙하높이 추정)

  • Kim, M. S.;Jung, H. M.;Seo, R.;Park, I. K.;Hwang, Y. S.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.461-468
    • /
    • 2001
  • Impact between fruits and other materials is a major cause of product damage in harvesting and handling systems. The oriental pears are more susceptible to bruising than other fruits such as European pears and apples, and are required more careful handling. The interest in the handling of the pears for the processing systems has raised the question of the allowable drop height to which pears can be dropped without causing objectionable damage. Drop tests on pears were conducted using an impact device developed by authors to estimate the allowable drop height without bruising. The impact device was constructed to hold in a selected orientation and to release a fruit by vacuum for dropping on to a force transducer. The drop height was adjustable for zero to 60 cm to achieve the desired distance between the bottom of the fruits and the top of the impact force transducer. The transducer was secured to 150 kg$\sub$f/ concrete block. The transducer signal was sampled every 0.17 ms with a strain gage measurement board in the micro computer where it was digitaly stored for later analysis. The selected sample fruit was Niitaka cultivar of pears which is one of the most promising fruit for export in Korea. The pears were harvested during the 1998 harvest season from an orchard in Daejeon. The sample fruit was selected from two groups which were stored for 3 months and 5 months respectively by the method of current commercial practice. The pears were allowed to stabilize at environmental condition(18$^{\circ}C$, 65% rh) of the experimental room. One hundred fifty six pears were tested from the heights of 5, 7.5. 10 and 12.5 cm while measurement were made of impact peak force, contact time, time to peak force, dwell time, pear diameter and mass. The bioyield strength and modulus of elasticity were measured using UTM immediately after each drop test. The allowable drop height was estimated on the base of bioyield strength of the pears in two ways. One was assumed the peak force during impact test increasing linearly with time, and the other was based on the actual drop test results. The computer program was developed for measuring the impact characteristics of the pears and analyzing the data obtained in the study. The peak force increased while contact times decreased with increasing drop height and contact times of the sample from the hard tissue group. The allowable drop height increased with increasing bioyield strength and contact times, and also varied with Poisson\`s ratio, mass and equilibrium radius of the pears. The allowable drop height calculated by a theoretical method was in the range from 1 to 4 cm, meanwhile, the estimated drop height considering the result of the impact test was in the range from 1 to 6 cm. Since the physical properties of fruits affected significantly the allowable drop height, the physical properties of the fruits should be considered when estimating the allowable drop height.

  • PDF

The Structural Safety Diagnosis of Three-Story Pagoda in Bulkuk Temple Using the Probability of Failure. (암석의 파괴 확률 분석을 통한 불국사 삼층석탑 구조 안전 진단)

  • Seo, Man-Cheol;Song, In-Seon;Choe, Hui-Su
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.57-69
    • /
    • 2001
  • We have carried out a nondestructive close examination for the purpose of the structural safety diagnosis of the Three-Story Pagoda(Seokga Pagoda) in Bulkuk temple in the city of Kyungju, Kyungbuk, Korea. Ultrasonic wave velocities were measured at 456 points of the pagoda comprising 44 blocks to estimate the mechanical properties of rock blocks constituting the pagoda. The measured velocities have the range of 1217 to 4403 m/sec with the average of 3227 m/sec. The empirical relationship between the ultrasonic velocity and the uniaxial compressive strength yielded the estimation of strength of each block, ranging from 134 to 844 kg/cm^2 and averaging 463 kg/cm^2. With an assumption that the strength of each block is described as a random variables having a normal distribution, we calculated the probability of failure of rock blocks of the pagoda. Our investigation revealed that the probability of the structural failure due to the weight of higher blocks is very low. However, the probability of partial failure around contact area is substantial, which is consistent with the appearance that edges and the corners of some blocks were broken off. The platform under the body of the pagoda appeared to be structurally weak as the probability of tensile failure of the lower platform is up to 18%, and diagonal fractures are shown where the probability of failure is high.

  • PDF