• Title/Summary/Keyword: Strength Estimation

Search Result 1,377, Processing Time 0.024 seconds

The Joint analysis of galaxy clustering and weak lensing from the Deep Lens Survey to constrain cosmology and baryonic feedback

  • Yoon, Mijin;Jee, M. James;Tyson, J. Tony
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.79.2-79.2
    • /
    • 2019
  • Based on three types of 2-point statistics (galaxy clustering, galaxy-galaxy lensing, and cosmic shear power spectra) from the Deep Lens Survey (DLS), we constrain cosmology and baryonic feedback. The DLS is a deep survey, so-called a precursor to LSST, reaching down to ~27th magnitude in BVRz' over 20 deg2. To measure the three power spectra, we choose two lens galaxy populations centered at z ~0.27 and 0.54 and two source galaxy populations centered at z ~0.64 and 1.1, with more than 1 million galaxies. We perform a number of consistency tests to confirm the reliability of the measurements. We calibrated photo-z estimation of the lens galaxies and validated the result with galaxy cross-correlation measurement. The B-mode signals, indicative of potential systematics, are found to be consistent with zero. The two cosmological results independently obtained from the cosmic shear and the galaxy clustering + galaxy-galaxy lensing measurements agree well with each other. Also, we verify that cosmological results between bright and faint sources are consistent. While there exist some weak lensing surveys showing a tension with Planck, the DLS constraint on S8 agrees nicely with the Planck result. Using the HMcode approach derived from the OWLS simulation, we constrain the strength of baryonic feedback. The DLS results hint at the possibility that the actual AGN feedback may be stronger than the one implemented in the current state-of-the-art simulations.

  • PDF

Automatic design, planning and drawing of scaffolding system for constructions

  • Hara, Takashi;Shimomura, Katsukiyo;Hamano, Keita;Miyake, Shoko
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.179-196
    • /
    • 2019
  • Temporary scaffold systems in the construction site play an important role for ensuring the safety of the workers and for constructing the stable structures. To assemble the scaffold, the pipe scaffolding system, the wedge binding scaffolding system and the particular materials have been utilized. To design the material arrangement of a scaffold, firstly the configuration was determined considering the construction geometry. Then, the strength of the scaffold was confirmed and the quantity of the material was accounted. In this paper, the design method of the temporary scaffold was proposed for intending the semi-automatic procedure. In the proposed design method, the geometric design and the safety requirement were specified by the safety standard and the design flow was followed by the designer's knowledge. The size and the quantities of the materials were calculated by referring to the relation between the scaffold and the constructing structure. In the calculating procedure, three dimensional positions of each scaffold materials were calculated and recorded simultaneously. Then, three dimensional scaffold structural was drawn semi-automatically on the CAD software by using the obtained material sizes, positions and directions. The proposed design method provides us the precise quantities of scaffold materials and enables us to reduce the design effort and the cost estimation processes. In addition, the obtained results can be applied to BIM software after converting to IFC format.

Fabrication and Estimation of an Ultrafine Grained Complex Aluminum Alloy Sheet by the ARB Process Using Dissimilar Aluminum Alloys (이종 알루미늄의 ARB공정에 의한 초미세립 복합알루미늄합금판재의 제조 및 평가)

  • Lee, Seong-Hee;Kang, Chang-Seog
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.893-899
    • /
    • 2011
  • Fabrication of a complex aluminum alloy by the ARB process using dissimilar aluminum alloys has been carried out. Two-layer stack ARB was performed for up to six cycles at ambient temperature without a lubricant according to the conventional procedure. Dissimilar aluminum sheets of AA1050 and AA5052 with thickness of 1 mm were degreased and wire-brushed for the ARB process. The sheets were then stacked together and rolled to 50% reduction such that the thickness became 1 mm again. The sheet was then cut into two pieces of identical length and the same procedure was repeated for up to six cycles. A sound complex aluminum alloy sheet was successfully fabricated by the ARB process. The tensile strength increased as the number of ARB cycles was increased, reaching 298 MPa after 5 cycles, which is about 2.2 times that of the initial material. The average grain size was $24{\mu}m$ after 1 cycle, and became $1.8{\mu}m$ after 6 cycles.

The Estimation of Fatigue Life for Al/CFRP Hybrid Laminated Composites using the Strain-Life Method (변형률-수명 평가기법을 이용한 Al/CFRP 하이브리드 적층 복합재의 피로수명 측정)

  • Yang, Seong Jin;Kwon, Oh Heon;Jeon, Sang Koo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.7-14
    • /
    • 2021
  • Hybrid laminated Al/carbon-fiber-reinforced plastic (CFRP) composites are attracting considerable attention from industries such as aerospace and automobiles owing to their excellent specific strength and specific rigidity. However, when this material is used to fabricate high-pressure fuel storage containers subjected to repeated fatigue loads, fatigue life evaluation for the working load is regulated as an important criterion for operational safety and ease of maintenance. Among the existing evaluation methods for these vessels, the burst test and the hydraulic repeat test require expensive facilities. Thus, the present study aims to develop an improved fatigue life test for Al/CFRP laminated hybrid composites. The test specimen was manufactured using a curved mold considering the shape of a type III high-pressure storage container. The strain-life method was used for fatigue life evaluation, and the life was predicted based on the transition life. The results indicate that the more complex the CFRP stacking sequence, the longer is the transition life. This test method is expected to be useful for ensuring the fatigue safety and economy of hybrid laminate composites.

Efficiency of insulation layers in fire protection of FRP-confined RC columns-numerical study

  • El-Mahdya, Osama O.;Hamdy, Gehan A.;Hisham, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.77 no.5
    • /
    • pp.673-689
    • /
    • 2021
  • This paper addresses the efficiency of thermal insulation layers applied to protect structural elements strengthened by fiber-reinforced polymers (FRP) in the case of fire event. The paper presents numerical modeling and nonlinear analysis of reinforced concrete (RC) columns externally strengthened by FRP and protected by thermal insulation layers when subjected to elevated temperature specified by standard fire tests, in order to predict their residual capacity and fire endurance. The adopted numerical approach uses commercial software includes heat transfer, variation of thermal and mechanical properties of concrete, steel reinforcement, FRP and insulation material with elevated temperature. The numerical results show good agreement with published results of full-scale fire tests. A parametric study was conducted to investigate the influence of several variables on the structural response and residual capacity of insulated FRP-confined columns loaded by service loads when exposed to fire. The residual capacity of FRP-confined RC column was affected by concrete grade and insulation material and was shown to improve substantially by increasing the concrete cover and insulation layer thickness. By increasing the VG insulation layer thickness 15, 32, 44, 57 mm, the loss in column capacity after 5 hours of fire was 30%, 13%, 7% and 5%, respectively. The obtained results demonstrate the validity of the presented approach for estimation of fire endurance and residual strength, as an alternative for fire testing, and for design of fire protection layers for FRP-confined RC columns.

Supremacy of Realized Variance MIDAS Regression in Volatility Forecasting of Mutual Funds: Empirical Evidence From Malaysia

  • WAN, Cheong Kin;CHOO, Wei Chong;HO, Jen Sim;ZHANG, Yuruixian
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.7
    • /
    • pp.1-15
    • /
    • 2022
  • Combining the strength of both Mixed Data Sampling (MIDAS) Regression and realized variance measures, this paper seeks to investigate two objectives: (1) evaluate the post-sample performance of the proposed weekly Realized Variance-MIDAS (RVar-MIDAS) in one-week ahead volatility forecasting against the established Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model and the less explored but robust STES (Smooth Transition Exponential Smoothing) methods. (2) comparing forecast error performance between realized variance and squared residuals measures as a proxy for actual volatility. Data of seven private equity mutual fund indices (generated from 57 individual funds) from two different time periods (with and without financial crisis) are applied to 21 models. Robustness of the post-sample volatility forecasting of all models is validated by the Model Confidence Set (MCS) Procedures and revealed: (1) The weekly RVar-MIDAS model emerged as the best model, outperformed the robust DAILY-STES methods, and the weekly DAILY-GARCH models, particularly during a volatile period. (2) models with realized variance measured in estimation and as a proxy for actual volatility outperformed those using squared residual. This study contributes an empirical approach to one-week ahead volatility forecasting of mutual funds return, which is less explored in past literature on financial volatility forecasting compared to stocks volatility.

Structural behavior of concrete walls reinforced with ferrocement laminates

  • Shaheen, Yousry B.I.;Refat, Hala M.;Mahmoud, Ashraf M.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.455-471
    • /
    • 2021
  • The present work focuses on experimental and numerical performance of the ferrocement RC walls reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh individually. The experimental program comprised twelve RC walls having the dimensions of 450 mm×100 mm×1000 mm under concentric compression loadings. The studied variables are the type of reinforcing materials, the number of mesh layers and volume fraction of reinforcement. The main aim is to assess the influence of engaging the new inventive materials in reinforcing the composite RC walls. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the composite walls employing ANSYS-10.0 Software. Parametric study is also demonstrated to check out the variables that can mainly influence the mechanical behavior of the model such as the change of wall dimensions. The obtained numerical results indicated the acceptable accuracy of FE simulations in the estimation of experimental values. In addition, the strength gained of specimens reinforced with welded steel mesh was higher by amount 40% compared with those reinforced with expanded steel mesh. Ferrocement specimens tested under axial compression loadings exhibit superior ultimate loads and energy absorbing capacity compared to the conventional reinforced concrete one.

Seismic capacity evaluation of fire-damaged cabinet facility in a nuclear power plant

  • Nahar, Tahmina Tasnim;Rahman, Md Motiur;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1331-1344
    • /
    • 2021
  • This study is to evaluate the seismic capacity of the fire-damaged cabinet facility in a nuclear power plant (NPP). A prototype of an electrical cabinet is modeled using OpenSees for the numerical simulation. To capture the nonlinear behavior of the cabinet, the constitutive law of the material model under the fire environment is considered. The experimental record from the impact hammer test is extracted trough the frequency-domain decomposition (FDD) method, which is used to verify the effectiveness of the numerical model through modal assurance criteria (MAC). Assuming different temperatures, the nonlinear time history analysis is conducted using a set of fifty earthquakes and the seismic outputs are investigated by the fragility analysis. To get a threshold of intensity measure, the Monte Carlo Simulation (MCS) is adopted for uncertainty reduction purposes. Finally, a capacity estimation model has been proposed through the investigation, which will be helpful for the engineer or NPP operator to evaluate the fire-damaged cabinet strength under seismic excitation. This capacity model is presented in terms of the High Confidence of Low Probability of Failure (HCLPF) point. The results are validated by the proper judgment and can be used to analyze the influences of fire on the electrical cabinet.

Comparative analysis of quantum circuit implementation for domestic and international hash functions (국내·국제 해시함수에 대한 양자회로 구현 비교 분석)

  • Gyeong Ju Song;Min Ho Song;Hwa Jeong Seo
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The advent of quantum computers threatens the security of existing hash functions. In this paper, we confirmed the implementation results of quantum circuits for domestic/international hash functions, LSH, SHA2, SHA3 and SM3, and conducted a comparative analysis. To operate the existing hash function in a quantum computer, it must be implemented as a quantum circuit, and the quantum security strength can be confirmed by estimating the necessary quantum resources. We compared methods of quantum circuit implementation and results of quantum resource estimation in various aspects and discussed ways to meet quantum computer security in the future.

COST ESTIMATE AT EARLY STAGE USING CASE-BASED REASONING

  • Kihoon Seong;Moonseo Park;Hyun-Soo Lee;Sae-Hyun Ji
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.883-889
    • /
    • 2009
  • The importance of cost estimate in early stage such has been increasing due to market change and severe competition in construction industry. Because the adjustable budget is only 20% after design stage, most of the crucial decisions to influence cost is made in the early stage. However, in the early stage, the project scope is not defined completely so that estimator has inaccurate information to make critical decision. Therefore, this research suggests the cost estimate method using case-based reasoning. Case-based reasoning is appropriate for the early cost estimating, as it has the strength of rapidity and convenience in cost estimation. This research analyzes 84 actual data of public apartment on the scale of 11~15 stories. In order to extract the most similar case, at the first step this research identifies influence factors and calculates attribute similarity. In case-based reasoning, the most challenging task is determining attribute weight. At the third step, this research calculates case similarity which is aggregated attribute similarity multipled by attribute weight. Finally, extracts the most similar case which has the highest score of case similarity.

  • PDF