• 제목/요약/키워드: Strength Development

검색결과 5,282건 처리시간 0.028초

미세구조 특성을 고려한 초기재령 콘크리트의 강도예측모델 (Strength Estimation Model for Early-Age Concrete Considering Microstructural Characteristics)

  • 황수덕;김의태;이광명
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.397-402
    • /
    • 2001
  • Microstructural characteristics such as hydrates and porosity greatly influence the development of concrete strength. In this study, a strength estimation model for early-age concrete considerig, the microstructural characteristics was proposed, which considers the effects of both an increment of degree of hydration and capillary porosity on a strength increment. Hydration modeling and compressive strength test with curing temperature and curing ages were carried out. By comparing test results with estimated strength, it is found that the strength estimation model can estimate compressive strength of early-age concrete with curing ages and curing temperature within a margin of error.

  • PDF

시스템 거푸집 적용을 위한 고강도 콘크리트의 양생온도별 조기강도 발현성상 (Development of Early-Strength of High-Strength Concrete According to Curing Temperature for Application of System Form)

  • 김무한;이승훈;강석표;길배수;주지현
    • 콘크리트학회논문집
    • /
    • 제13권6호
    • /
    • pp.536-543
    • /
    • 2001
  • 고강도콘크리트를 시스템 거푸집 공법에 적용하는데 있어 거푸집 탈형시기가 일반 거푸집과 비교하여 상대적으로 빠르기 때문에 공기단축을 위해서는 조기재령에서의 압축강도 발현성상을 파악하는 것이 중요하다. 따라서, 본 논문에서는 양생온도별 배합조건에 따른 고강도콘크리트의 응결성상 및 시스템 거푸집 탈형이 이루어지는 조기재령에서의 압축강도 발현성상을 비교.분석함으로써 실제 건설생산현장에서 고강도콘크리트를 시스템 거푸집공법에 적용하는데 있어 거푸집 탈형시점에 대한 정량적인 판단기준을 확립할 수 있는 기초적 자료를 제시하고자 한다. 본 실험결과 슬립폼 공법을 적용하는데 있어 필수적인 조기강도 확보를 위한 양생온도 범위 및 배합조건을 알 수 있었고, 조기재령에서의 압축강도 발현성상 고찰을 통해 시스템 거푸집 탈형시점을 결정하는데 있어 기초자료를 제시할 수 있었다.

10℃ 양생조건에서 단위 시멘트량 변화 및 경화촉진제의 복합사용에 따른 강도발현 성능에 관한 연구 (Effect of Cement Contents and Combinations of Accelerators on Strength Development of Concrete Cured at 10℃)

  • 송영찬;이태규;김용로;서치호
    • 한국건설순환자원학회논문집
    • /
    • 제6권2호
    • /
    • pp.94-99
    • /
    • 2018
  • 본 연구에서는 현장의 골조공사에 주로 활용되고 있는 설계기준강도 21~27MPa 범위의 콘크리트를 대상으로 $10^{\circ}C$ 온도조건의 범위에서 기존 조강형 혼화제를 사용한 것 대비 경화촉진제를 복합사용하여 추가 첨가할 경우 1종 보통포틀랜드를 사용한 콘크리트의 초기 강도발현에 미치는 영향을 검토하고자 하였으며, 조강형 혼화제에 경화촉진제를 단일 첨가한 기존 자료와 촉진 효과가 우수한 3가지의 경화촉진제를 선정하여 이에 대한 복합사용에 대한 검토를 수행하였다. 본 연구의 실험결과 $CaBr_2+NaSCN+DEA$를 복합사용한 경우 $CaBr_2$, NaSCN의 단일사용에 비하여 시멘트량 및 혼화제의 사용에 따라 강도발현율이 증가되는 경향이 나타났으며, 단위 시멘트량 $330kg/m^3$ 이상의 조건에서 복합형태의 경화촉진제를 첨가하게 되면 기존 조강형 혼화제 또는 경화촉진제를 단일 사용한 것에 비하여 5MPa 발현시점이 12시간 정도 단축할 수 있는 것으로 확인되었다.

Phenomenological Model to Re-proportion the Ambient Cured Geopolymer Compressed Blocks

  • Radhakrishna, Radhakrishna;Madhava, Tirupati Venu;Manjunath, G.S.;Venugopal, K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권3호
    • /
    • pp.193-202
    • /
    • 2013
  • Geopolymer mortar compressed blocks were prepared using fly ash, ground granulated blast furnace slag, silica fume and metakaolin as binders and sand/quarry dust/pond ash as fine aggregate. Alkaline solution was used to activate the source materials for synthesizing the geopolymer mortar. Fresh mortar was used to obtain the compressed blocks. The strength development with reference to different parameters was studied. The different parameters considered were fineness of fly ash, binder components, type of fine aggregate, molarity of alkaline solution, age of specimen, fluid-to-binder ratio, binder-to-aggregate ratio, degree of saturation, etc. The compressed blocks were tested for compression at different ages. It was observed that some of the blocks attained considerable strength within 24 h under ambient conditions. The cardinal aim was to analyze the experimental data generated to formulate a phenomenological model to arrive at the combinations of the ingredients to produce geopolymer blocks to meet the strength development desired at the specified age. The strength data was analyzed within the framework of generalized Abrams' law. It was interesting to note that the law was applicable to the analysis of strength development of partially saturated compressed blocks when the degree of saturation was maintained constant. The validity of phenomenological model was examined with an independent set of experimental data. The blocks can replace the traditional masonry blocks with many advantages.

Improvement of the Early Age Strength of Low Cement Concrete Using High Volume Mineral Admixture

  • Park, Jong-Ho;Kim, Yong-Ro;Song, Young-Chan;Song, Dong Yub;Kim, Gyu-Yong
    • 한국건축시공학회지
    • /
    • 제12권6호
    • /
    • pp.566-574
    • /
    • 2012
  • To address the problem of global warming, consumption of cement, the main material of concrete, should be decreased. Unfortunately, when industrial by-products are used in large quantities as admixture, the early age strength of concrete will be decreased, reducing its viability for use in concrete structures. Therefore, in this study, the application of an ionization accelerator and alkaline activator as addition agent of superplasticizer were investigated to secure a similar early age strength to that of normal concrete, thus increasing the viability of low cement concrete. Through the investigation, it was found that specimens that used a combination of Alkaline-activator (Na2Sio3) and ionization accelerator (Amine) had the highest early and long-age compressive strength. From this, we can determine an appropriate range of application of superplasticizer to improve early-age compressive strength of low cement concrete.

각종 양생조건에 따른 비스페놀 A형 에폭시수지 혼입 모르타르의 강도성상 (Strength Properties of Bisphenol A-Type Epoxy-Modified Mortars under Various Curing Conditions)

  • 김완기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.55-59
    • /
    • 2009
  • The epoxy resin without hardener can harden by a ring-opening reaction in the presence of the alkalies produced by the hydration of cement in epoxy-modified mortars and concretes. This paper investigates the effect of curing conditions on the strength improvement of polymer-modified mortars using bisphenol A-type epoxy resin without hardener. The polymer-modified mortars using epoxy resin are prepared with various polymer-cement ratios, and subjected to ideal, water, dry and heat cures. In the heat cure, the epoxy-modified mortars are sealed or unsealed with a PVDC (polyvinylidene chloride) film. The epoxy-modified mortars are tested for flexural and compressive strengths at desired curing methods. The microstructures of the epoxy-modified mortars are also observed by scanning electron microscope. The effects of curing conditions on the strength development of the epoxy-modified mortars are examined. From the test results, the marked effectiveness of the heat cure under the PVDC film sealing against the development of the strength of the epoxy-modified mortar without the hardener is recognized. The flexural and compressive strengths of 7-day-90℃ heat-cured, PVDC film-sealed epoxy-modified mortars without hardener reach 7 to 17MPa and 24 to 44MPa respectively, and are two to three times of Unmodified mortar. Such high strength development of the epoxy-modified mortars may be achieved by the dense microstructure formation by cement hydrates and the hardening of the epoxy resin in the mortars.

  • PDF

하이드로포밍용 DP780MPa급 강판의 전기저항용접 강관 개발에 관한 연구 (A Study on the Development of Electric Resistance Welding of DP780 Grade Steel for Hydroforming Tube)

  • 박성필;권용재
    • 한국자동차공학회논문집
    • /
    • 제23권3호
    • /
    • pp.279-286
    • /
    • 2015
  • To achieve lightweight design, research & development of various lightweighting technologies such as hydroforming are underway worldwide. In the case of hydroforming, application of ultra high strength steel is essential for weight reduction of the car. However, considering common high-strength carbon steel, it is not suitable to the actual hydroformed parts since the lack of formability. DP steel offers an outstanding combination of strength and formability as a result of their microstructure. DP steel has high strength and good formability but it's difficult to secure stable quality of welding section because of softening of weld section and chemical composition. Therefore, most of companies use LASER welding when making high strength tube. Electric resistance welding is excellent production method for steel tube manufacturing considering the productivity. Optimum electric resistance welding technology is needed to be developed for application of high strength hydroformed parts using DP steel. This study is comprehensive research & development from electric resistance welding to actual formabililty evaluation.

혼화재 사용 콘크리트의 응결 및 강도발현에 미치는 온도의존성에 관한 연구 (A Study on the Temperature Dependency Affecting Setting and Strength Development of Concrete Using Mineral Admixtures)

  • 주은희;손명수;전현규;한민철;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.707-710
    • /
    • 2005
  • This experimental study investigate temperature dependency affecting setting and strength development of concrete using mineral admixtures such as CKD, FA and BS. For the properties of setting at $5^{\circ}C$, setting time of concrete with mineral admixture was delayed about $3\~14$ hour compared with that of plain concrete. Use of CKD had a desirable effect on reducing setting retard under $5^{\circ}C$ because of $CaCO_3$ of CKD while use of FA and BS retarded setting time greatly. For compressive strength under $5^{\circ}C$, concrete with CKD had the most compressive strength in early age compared with the other mineral admixtures but exhibited slight strength loss in $-5^{\circ}C$ at 28days. Especially, concrete with FA and BS was observed in early stage at low curing temperature because of strength loss remarkably in $-5^{\circ}C$.

  • PDF

조기강도 콘크리트의 현장적용을 위한 고성능감수제의 종류에 따른 특성 연구 (Study on the Field Application According to the Early Strength of the Concrete Admixed with Polycarboxylate Superplasticizer)

  • 이진우;김경민;이영환;배연기;이재삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.671-674
    • /
    • 2005
  • In this study, it is examined the properties of early strength of concrete mixed with polycarboxylate superplasticizer. For this experiment, it is analyzed that the slump and strength properties according to the mixture factors, compared with cements and superplasticizers of each company and curing temperature($15,\;20^{\circ}C$). (1) The slump loss of concrete used polycarboxylate superplasticizer(rapid strength type) showed $0.5\~1.5cm$, it is judged that slump loss according to the time lapse can be minimized. (2) The performance of polycarboxylate superplasticizer kept up consistency and accelerated strength development. it is possible to reveal 12MPa within $18\~20$hours at $20^{\circ}C$ curing, but impossible within 24hours at $15^{\circ}C$. (3) It is necessary to studies about rapid strength development in the low temperature.

  • PDF

콘크리트의 초기 강도발현에 미치는 혼화제의 영향 (Influence of Chemical Admixture on the Strength Development of Concrete at Early Age)

  • 황인성;나운;이승훈;류현기;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.741-744
    • /
    • 2003
  • In this study, the influence of chemical admixture on early strength development of concrete is discussed. According to the results, fluidity with variation of kinds of chemical admixture is lower in the case of acceleration type than in the case of normal type. Setting time of naphthalene acceleration type is shortened by I hour, and that of melamine is nearly same, but that of polycarbonic acid is somewhat retarded in comparison with that of naphthalene normal type. Early compressive strength gains 5MPa in about 18hours regardless of the kinds of chemical admixture. But as time elapses, compressive strength is higher in order of polycarbonic acid, naphthalene and melamine type. The relativity between compressive strength and the rebound value of P-type schmidt hammer is also favorable at early age, and compressive strength of 5MPa is estimated at the rebound value of 22.

  • PDF