Enhancing continuous queries over data streams with temporal functions and predicates enriches the expressive power of those queries. While traditional continuous queries retrieve only the values of attributes, temporal continuous queries retrieve the valid time intervals of those values as well. Correctly evaluating such queries requires the coalescing of adjacent timestamps for value-equivalent tuples prior to evaluating temporal functions and predicates. For many stream applications, the available computing resources may be too limited to produce exact query results. These limitations are commonly addressed through load shedding and produce approximated query results. There have been many load shedding mechanisms proposed so far, but for temporal continuous queries, the presence of coalescing makes theses existing methods unsuitable. In this paper, we propose a new accuracy metric and load shedding algorithm that are suitable for temporal query processing when memory is insufficient. The accuracy metric uses a combination of the Jaccard coefficient to measure the accuracy of attribute values and $\mathcal{PQI}$ interval orders to measure the accuracy of the valid time intervals in the approximate query result. The algorithm employs a greedy strategy combining two objectives reflecting the two accuracy metrics (i.e., value and interval). In the performance study, the proposed greedy algorithm outperforms a conventional random load shedding algorithm by up to an order of magnitude in its achieved accuracy.
Aggregation join queries are an important class of queries over data streams. These queries involve both join and aggregation operations, with window-based joins followed by an aggregation on the join output. All existing research address join query optimization and aggregation query optimization as separate problems. We observe that, by putting them within the same scope of query optimization, more efficient query execution plans are possible through more versatile query transformations. The enabling idea is to perform aggregation before join so that the join execution time may be reduced. There has been some research done on such query transformations in relational databases, but none has been done in data streams. Doing it in data streams brings new challenges due to the incremental and continuous arrival of tuples. These challenges are addressed in this paper. Specifically, we first present a query processing model geared to facilitate query transformations and propose a query transformation rule specialized to work with streams. The rule is simple and yet covers all possible cases of transformation. Then we present a generic query processing algorithm that works with all alternative query execution plans possible with the transformation, and develop the cost formulas of the query execution plans. Based on the processing algorithm, we validate the rule theoretically by proving the equivalence of query execution plans. Finally, through extensive experiments, we validate the cost formulas and study the performances of alternative query execution plans.
In recent years, progress in hardware technology has resulted in the possibility of monitoring many events in real time. The volume of incoming data may be so large, that monitoring all individual data might be intractable. Revisiting any particular record can also be impossible in this environment. Therefore, many database schemes, such as aggregation, join, frequent pattern mining, and indexing, become more challenging in this context. This paper surveys the previous efforts to resolve these issues in processing data streams. The emphasis is on specifying and processing sliding window queries, which are supported in many stream processing engines. We also review the related work on stream query processing, including synopsis structures, plan sharing, operator scheduling, load shedding, and disorder control.
기존의 MuX 시스템은 분산환경에서 멀티미디어 데이터를 전송하기 위해서 PUSH 방식의 데이터 전송기법만을 제공한다. PUSH 방식의 데이터 전송기법은 자료 발생매체 중심의 데이터 전송기법으로 멀티미디어 데이터가 발생할 때 바로 자료 사용 매체로 전송하는 기법이다. PUSH 방식 데이터 전송 기법은 네트웍 대역폭이 크고 시스템 자원이 풍부한 경우 간단히 연출 QoS를 만족시킬 수 있다. 그러나 네트웍의 대역폭이 좁은 시스템에서는 PUSH 방식 데이터 전송기법으로 연출 QoS를 만족시키는데 한계가 있다. 이러한 문제를 해결하기 위해 PULL 방식 데이터 전송기법을 제안하였다. PULL 방식 데이터 전송기법은 자료 사용 매체 중심의 데이터 전송 기법으로 자료 사용 매체의 요구시점에 요구한 만큼의 데이터를 발생시켜 그 매체로 전송하는 방법이다.
개인용 컴퓨터 및 각종 모바일 기기의 이용 증가로 인해 많은 분야에서 다양한 형태의 웹기반 서비스들이 널리 활용되고 있다. 이에 따라 해당 분야에서 개인 맞춤형 서비스를 지원하기 위한 사용자 이용 로그 분석 등에 대한 연구가 활발히 진행되고 있으며, 특히 사용자 로그 데이터를 구성하는 구성요소의 중요성 차별화에 기반한 분석 기법들이 활발히 연구되었다. 본 논문에서는 웹 클릭 스트림에서 유용하게 적용될 수 있는 고유용 과거 정보 탐색 기법을 제시한다. 해당 기법을 통해 기존의 웹 클릭 스트림 분석 기법에서는 쉽게 탐색하지 못했던 정보인 타겟 마케팅 등에 유용하게 활용될 수 있는 중요 정보를 쉽게 탐색할 수 있다. 본 논문의 연구 결과는 IoT 환경 및 생물정보 분석 등과 같이 데이터 스트림 형태로 정보를 발생시키는 다양한 컴퓨터 응용 분야에도 활용될 수 있을 것이다.
유비쿼터스 공간 컴퓨팅 환경에서 GeoSensor는 RFID, WSN, Web CAM, Digital Camera, CCTV, 텔레매틱스 단말 등에서 발생되는 다양한 데이터와 함께 직.간접적으로 지리적 정보를 포함하는 데이터 스트림을 발생하는 센서들로, 지리적 정보를 이용한 USN 기술과 공간적 특성에 기반을 둔 서비스의 활성화에 기여하고 있다. 이러한 GeoSensor를 기반으로 하는 다양한 u-GIS 서비스를 제공하기 위해서는 광역의 GeoSensor들로부터 발생하는 센서 데이터 스트림에 대한 효과적인 처리가 필수적이다. 본 연구에서는 위치 및 이동성을 갖는 GeoSensor들로부터 생성되는 실시간 데이터 스트림에 대한 효율적인 수집, 저장, 그리고 연속 질의 처리를 제공하여 사용자의 상황(Context)에 부합하는 다양한 u-GIS 응용 서비스의 효과적인 구축을 지원하는 GeoSensor 데이터 스트림 처리 시스템을 제안한다.
기존의 멀티미디어 메일은 대용량 메일이라 개인 사용자에게 그 부담이 크지 않을 수가 없었다. 본 연구에서는 멀티미디어 스트림엔진인 Essence 를 이용하여 동영상 멀티미디어 메일을 전송하는데 필요한 Essence 내에 데이터베이스를 지원하기 위한 DBMedium 개발과 데이터베이스 라이브러리를 개발하기 위한 일련의 과정을 제안하고 있다.
기존의 멀티미디어 연구의 실현에 있어 가장 큰 문제라 할 수 있던 성능의 문제가 하드웨어의 급속한 발달로 해결되어 감에 따라 멀티미디어 및 제반 관련기술도 함께 발전되었으며 이에 기반한 multimedia stream에서의 event를 검출하기 위한 다양한 연구들이 진행되어 왔다. 그러나 지금까지의 연구는 주로 전송 및 저장, 검색에 집중되어 연구되어 왔으며 영상인식 등의 Vision관련 연구에서는 멀티미디어 스트리밍 기술과의 연동을 고려하지 않은 연구를 수행함에 따라 검출 가능한 event가 있다고 하더라도 응용영역에 종속적인 인테페이스만을 고려함에 따라 사용자가 이를 기술(記述, description)하거나, 사용자에게 검출 가능한 event를 제시하기 위해 일반화된 방법이 제시되어 있지 않았다. 본 연구에서는 사용자가 검출을 원하는 event를 기술하는 방법과, 시스템에서 검출 가능한 event를 제시하기 위한 방법을 제안하고, 제시되는 방법이 응용영역에 독립적이기 위해 요구되는 사항들과 객체 단위인 이벤트/행위와 처리기 사이의 인터페이스에 관하여 정의한 후 기본적인 동작방식을 제안한다.
The ubiquitous sensor network technique is widely applied to variety of information fields such as home automations, logistics, traffic controls, public administrations, health and environment monitoring and etc. It is particularly useful in the areas where energy consumption is minimal and where continuous monitoring of the surrounding environments, which generates streams of data, are required. In this study, we have designed and implemented a living environment automatic control system which collects the streams of temperature, humidity, light and noise data of a simulated house setting in real-time fashion, then controls the home environment based on the collected data according to the users favorites. In order to differentiate the proposed system from the currently existing similar system, we have demonstrated not only the feasibility of collecting data using sensor network in the controlled environment but also the ability to control the various household equipments through wireless communications.
Achieving situation awareness is especially challenging for real-time data stream applications because they i) operate on continuous unbounded streams of data, and ii) have inherent realtime requirements. In this paper we showed how formal data stream modeling and analysis can be used to better understand stream behavior, evaluate query costs, and improve application performance. We used MEDAL, a formal specification language based on Petri nets, to model the data stream queries and the quality-of-service management mechanisms of RT-STREAM, a prototype system for data stream management. MEDAL's ability to combine query logic and data admission control in one model allows us to design a single comprehensive model of the system. This model can be used to perform a large set of analyses to help improve the application's performance and quality of service.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.