• 제목/요약/키워드: Streamline Curvature

검색결과 59건 처리시간 0.018초

시뮬레이션을 이용한 고속도로 진출입로에서 차량속도와 곡선반경에 따른 상용차량 전복 연구 (A Simulation Study of Commercial Vehicle Rollover in Highway Ramp Section According to Vehicle Speed and Curvature)

  • 박중영;이홍국;장경진;서이정;유송민
    • 자동차안전학회지
    • /
    • 제7권2호
    • /
    • pp.50-54
    • /
    • 2015
  • Rollover accidents are a common occurrence on the highway ramp section. At highway ramp section, unexpected situations might occur due to demand on complex steering control unlike routine driving maneuver in the main streamline. Commercial vehicles have higher risk of rollover due to their high center of gravity. In this study, the lateral acceleration causing rollover would be found. In addition, sections would be classified as dangerous and safe ones by confirming the maximum lateral acceleration for various speed and curvature.

평면 난류 오프셋 제트에 관한 연구 (A Study on the Plane Turbulent Offset Jet)

  • 유정열;강신형;채승기;좌성훈
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.357-366
    • /
    • 1986
  • 본 연구에서는 3공피토우관 및 열선유속계를 사용하여 벽에 평행한 2차원 난류제트의 난류량들을 측정하였고, 스캐니 밸브를 이용하여 벽면아력분포를 측정함 으로써 재순환 영역을 포함한 전체유동장에서의 유동특성을 고찰하였다. 또한 잘 알려진 표준 k-.epsilon. 난류모형 및 유선곡률을 고려한 수정된 k-.epsilon. 난류모형을 이용하여 측정 수치해석을 수행하였다.

비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석 (Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation)

  • 신종근;최영돈
    • 대한기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.1158-1174
    • /
    • 1988
  • 본 연구에서는 계단형 벽면조건을 없게 하기 위해서 비직교 좌표계(non-orth- ogonal coordinate system)를 사용하여 수치해석하였다. 비직교 좌표계를 이용한 수 치해석의 예는 Thompson등이 Laplace방정식 혹은 Poisson방정식을 해석함으로써 비직 교 격자망을 구성한 바 있고, Fahgri와 Asako는 대수적 비직교 좌표변환으로 유한차분 방정식을 유도하여 비정규경계면을 갖는 관로에서의 유동특성을 해석하였으며 이재헌 과 이상렬은 Fahgri와 Asako의 방법을 비정규경계면을 갖는 밀폐공간내에서의 자연대 류의 수치해석에 적용한 바 있다. 본 해석에서도 Fahgri와 Asako의 변환법으로 유한 차분방정식을 유도하였는데, 이 방법을 사용할 경우 확대관의 경사벽면을 계단형으로 만들지 않고 유한차분방정식을 유도할 수 있어서 계단형 벽면으로 인한 해의 오차를 제거할 수 있다. Fig.2는 본 해석에서 사용한 비직교 격자망을 나타낸다.

2-프레임 PTV를 이용한 수직벽 주위 유동장 해석 (Velocity Field Measurement of Flow Around a Surface-Mounted Vertical Fence Using the Two-Frame PTV System)

  • 백승조;이상준
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1340-1346
    • /
    • 1999
  • The turbulent shear flow around a surface-mounted vertical fence was investigated using the two-frame PTV system. The Reynolds number based on the fence height(H) was 2950. From this study, it is revealed that at least 400 instantaneous velocity field data are required for ensemble average to get reliable turbulence statistics, but only 100 field data are sufficient for the time-averaged mean velocity information. Various turbulence statistics such as turbulent intensities, turbulence kinetic energy and Reynolds shear stress were calculated from 700 instantaneous velocity vector fields. The fence flow has an unsteady recirculation region behind the fence, followed by a slow relaxation to the flat-plate boundary layer flow. The time-averaged reattachment length estimated from the streamline distribution is about 11.2H. There exists a region of negative Reynolds shear stress near the fence top due to the highly convex (stabilizing) streamline-curvature of the upstream flow. The large eddy structure in the separated shear layer seems to have significant influence on the development of the separated shear layer and the reattachment process.

An instability criterion for viscoelastic flow past a confined cylinder

  • Dou, Hua-Shu;Phan-Thien, Nhan
    • Korea-Australia Rheology Journal
    • /
    • 제20권1호
    • /
    • pp.15-26
    • /
    • 2008
  • It has been known that there is a viscoelastic instability in the channel flow past a cylinder at high Deborah (De) number. Some of our numerical simulations and a boundary layer analysis indicated that this instability is related to the shear flow in the gap between the cylinder and the channel walls in our previous work. The critical condition for instability initiation may be related to an inflection velocity profile generated by the normal stress near the cylinder surface. At high De, the elastic normal stress coupling with the streamline curvature is responsible for the shear instability, which has been recognized by the community. In this study, an instability criterion for the flow problem is proposed based on the analysis on the pressure gradient and some supporting numerical simulations. The critical De number for various model fluids is given. It increases with the geometrical aspect ratio h/R (half channel width/cylinder radius) and depends on a viscosity ratio ${\beta}$(polymer viscosity/total viscosity) of the model. A shear thinning first normal stress coefficient will delay the instability. An excellent agreement between the predicted critical Deborah number and reported experiments is obtained.

내측원관이 회전하는 동심이중원관 사이의 난류 쿠에트 유동에 관한 연구 (Turbulent Couette Flow between Coaxial Cylinders with Inner Cylinder Rotating)

  • 김광용;김진욱;조용철
    • 대한기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.540-546
    • /
    • 1992
  • 본 연구에서는 레이놀즈응력 모델이 곡률효과에 대한 추가적인 수정을 요구하 는 지를 알기 위하여 유선곡률에 의해 영향을 받는 원형 쿠에트 유동에 대해 수치계산 을 수행하고, 이 결과를 측정한 실험치와 비교하였다. 본 연구의 실험에서는 완전 난류 영역에서 난류평균속도와 난류응력성분들을 측정하였다. 수치계산에 있어서는 레이놀즈응력 모델에 대하여 Gibson과 Younis가 곡률효과를 고려해 제안한 새로운 모 델상수를 기존의 모델상수와 함께 적용하여 그 결과를 비교하였다. 계산된 결과를 본 실험의 측정치와 아울러 함께 Smith와 Townsend의 측정치와도 비교하였다.

최적화 기법을 이용한 대형 증기터빈 유로설계 (Flow Path Design of Large Steam Turbines Using An Automatic Optimization Strategy)

  • 임홍식;김영상;조상현;권기범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.771-776
    • /
    • 2001
  • By matching a well established fast throughflow code, with standard loss correlations, and an efficient optimization algorithm, a new design system has been developed, which optimizes inlet and exit flow-field parameters for each blade row of a multistage axial flow turbine. The compressible steady state inviscid throughflow code based on streamline curvature method is suitable for fast and accurate flow calculation and performance prediction of a multistage axial flow turbine. A general purpose hybrid constrained optimization package, iSIGHT has been used, which includes the following modules: genetic algorithm, simulated annealing, modified method of feasible directions. The design system has been demonstrated using an example of a 5-stage low pressure steam turbine for 800MW thermal power plant previously designed by HANJUNG. The comparison of computed performance of initial and optimized design shows significant improvement in the turbine efficiency.

  • PDF

3차원 축류형 터빈익형의 공력설계에 관한 연구 (A Study on the Aerodynamic Design of Three-Dimensional Axial Type Turbine Blade)

  • 장범익;김동식;조수용
    • 동력기계공학회지
    • /
    • 제5권3호
    • /
    • pp.38-47
    • /
    • 2001
  • One stage axial type turbine is designed by mean-line analysis, streamline curvature method and blade design method using shape parameters. Tip and hub diameter of the turbine are 300mm and 206.4mm, respectively. The rotating speed is 1800RPM, and the output power is 1.4kW. The flow coefficient is 1.68 and the reaction factor at mean-line is 0.373. The number of stator and rotor of the turbine are 31 and 41, respectively. Mach number of stator exit flow near hub is 0.164. A test rig is developed for performance test to validate a developed design method. The experimental result shows that the maximum efficiency is obtained on the design point.

  • PDF

원형단면을 갖는 90$^{\circ}$ 곡관내의 선회유동에 관한 실험적 연구 (An Experimental Study on Swirling Flow in a 90 Degree Circular Section Tube)

  • 장태현;이해수
    • 한국가시화정보학회지
    • /
    • 제1권1호
    • /
    • pp.82-91
    • /
    • 2003
  • The study of swirl flow has been of technical and scientific interest because it has an internal recirculation field and its tangential velocity is related to the curvature of the streamline. The fluid flow for ducts or elbows of an internal engine has been much studied through numerical methods and experiments, but studies about swirl flow has been insufficient. Using the PIV (Particle Image Velocimetry) method, this study found the time-mean velocity distribution, time-mean turbulent intensity, with swirl and without swirl flow for Re=10,000, 15,000, 20,000, and 25,000 along longitudinal sections and the results appear to be physically reasonable. In addition, axial velocity distribution is compared with that of Jeong's, Kodadadi's and Murakami's. It was found that the highest velocity of swirl and non-swirl flow occurs in the opposite position at the center of a round tube, $\phi$=45$^{\circ}$

  • PDF

디퓨저에서 벽면으로의 방출유로에서의 난류유동에 관한 수치 해석적 연구 (A Numerical Study on the Turbulent Flow in the Discharge Flow Path from a Diffuser to a Wall)

  • 이준;김영인
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.44-50
    • /
    • 2001
  • A numerical study was made to choose the better turbulence model for the flow in the discharge flow path from a diffuser to a wall. In this study standard $\kappa-\epsilon$ model(SKE), RNG $\kappa-\epsilon$ model(RNG), and Reynolds stress model(RSM) were applied. In case of the flow with relatively high Reynolds number at a diffuser inlet, the pressure loss coefficients by RNG have a tendency to be near to those by SKE at small ratio(below about 0.35) of $h/D_o$, but to those by RSM at large ratio(above about 0.35). At large ratio RNG begins to enlarge the effects of rapid strain and streamline curvature. RNG & RSM are recommended as the appropriate turbulence models for this case. But it is noticeable that the velocity gradient pattern in RNG is same as in SKE, and also that the total pressure distribution in RNG is same as in RSM only at swirling flow area, same as in SKE only at main flow area.

  • PDF