• Title/Summary/Keyword: Stream wetland

Search Result 169, Processing Time 0.034 seconds

Performance of Shi-hwa Constructed Wetland for the treatment of severely polluted stream water (시화호 인공습지를 이용한 오염된 하천의 수질 정화)

  • Lee, Kyung-Do;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.615-618
    • /
    • 2003
  • A prototype of 76 ha Shi-hwa constructed wetland was constructed for the first time in Korea to purify severely polluted stream water. Hydrology, vegetation(macrophyte) and water quality for Banwol and Donghwa wetland built in Shi-hwa tidal reclaimed area were monitored to evaluate the performance of the wetlands. The overall efficiency for the treatment of polluted stream water using the wetlands showed no significant improvement. The monthly average removal rates on SS, BOD, TN and TP for Banwol and Donghwa wetlands showed 66.5% and 62.8%, 14.8 and 34.3%, 33.9 and 47.1% and 20.8 and 51.6%, respectively. It is considered that three major factors, ie. wide fluctuations in inflow rate, short hydraulic retention time and small open area compared with vegetated area could have a great influence on low system efficiency.

  • PDF

Nitrate Removal Rate in Cattail Wetland Cells of a Pond-Wetland System for Stream Water Treatment (하천수정화 연못-습지 시스템 부들 습지셀의 초기 질산성질소 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.24-29
    • /
    • 2002
  • Nitrate removal rate in three cattail wetland cells was investigated. They were a part of a pond-wetland system for stream water treatment demonstration. The system was composed of two ponds and six wetland cells. The acreage of each cell was approximately $150m^2$. The earth works for the system were finished from April 2000 to May 2000 and cattails were planted in the three cells in June 2000. Waters of Sinyang Stream flowing into Kohung Estuarine Lake were pumped into a primary pond, whose effluent was discharged into a secondary pond. The reservoir was formed by a tidal marsh reclamation project and located in southern coastal area of Korean Peninsula. Effluents from the secondary pond were funneled into the three cells. Volumes and water quality of inflow and outflow were analyzed from July 2000 through January 2001. Inflow and outflow averaged $20.2m^3/day$ and $19.8m^3/day$, respectively. Hydraulic retention time was about 1.6 days. Average influent and effluent nitrate concentration was $1.98mg/{\ell}$, $1.38mg/{\ell}$, respectively. Nitrate removal rate averaged $82.6mg\;m^{-2}\;day^{-1}$. Seasonal changes of nitrate retention rates were closely related to those of wetland cell temperatures. The average nitrate removal rate in the cells was a little lower, compared with that of $125.0mg\;m^{-2}\;day^{-1}$ for the wetlands operating in North America. This could be attributed to the initial stage of the cells and inclusion of three cold months into the seven-month study period. Root rhizosphere in wetland soils and litter-soil layers on cell bottoms could not developed. Increase of standing density of cattails within a few years will establish both root zones suitable for the nitrification of ammonia to nitrates and substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increase of the nitrate retention rate.

The Efficacy of Water Purification and Distribution of Ammonia Oxidizing Bacteria in Shihwa Constructed Wetland (시화호 인공습지의 수질정화 및 암모니아 산화균의 분포 연구)

  • Kim, Seiyoon;Kim, Misoon;Lee, Sunghee;Lim, Miyoung;Lee, Youngmin;Kim, Zhiyeol;Ko, GwangPyo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2010
  • Water quality and the distribution of ammonia oxidizing bacteria were characterized in constructed wetland of Shihwa lake. Both physico-chemical parameters and fecal indicator microorganisms including total coliforms, E.coli, Enterococcus spp. were measured. In addition, denaturant gradient gel electrophoresis (DGGE) was carried out after PCR amplification of amoA gene from input, output, and wetland sites of the Banwol, Donghwa, and Samhwa stream in Shihwa lake area. Physico-chemical parameters were in proper range for typical nitrifying bacteria to grow and perform their biological activities. Average concentrations of fecal indicator microorganisms of wetland samples were lower than those of input sites. These results suggested that microbial water quality improved by the process of constructed wetland. According to phylogenetic information obtained from DGGE from study sites, distribution of nitrifying bacteria from each of input, output, and wetland were generally distinctive one another. In addition, distribution of nitrifying bacteria between Banwol and Donghwa streams showed higher similarity (52.6%) than this of Samhwa stream (15.2%). These results indicated that characteristics of ammonia oxidizing bacteria in Samhwa were unique in comparison with those of Banwol and Donghwa stream.

Distribution of Fish Species in Wetland Protected Areas in South Korea

  • Chu, Yeounsu;Yoon, Jungdo;Cho, Kwang-Jin;Kim, Mijeong;Lim, Jeongcheol;Lee, Changsu
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.1
    • /
    • pp.42-52
    • /
    • 2021
  • In order to secure basic data on biodiversity for wetland conservation and management used the data from Wetland Protected Area surveys conducted in South Korea (2015-2019) to analyze the distribution of fish from a total of 15 orders, 45 families, 134 species, and 12,972 individuals. The predominant species identified were Zacco platypus (Temminck and Schlegel) (19.47%) and Zacco koreanus (Kim, Oh and Hosoya) (8.16%). Of all emergent species, 52.9% (n=71 species) were freshwater species, 26.9% (n=36) were brackish species, 3.0% (n=4) were migratory species, 27% (n=36) were marine species, and 9.0% (n=12) were riffle benthic species. Overall, 5.2% (n=7 species) were endangered species, 3.0% (n=4) were exotic species, and 23.1% (n=31) were Korean endemic species. The eight identified Wetland Protected Areas (WPA) were classified based on their habitat characteristics and on the analysis of their emergent fish communities, as estuarine (n=2), coastal dune (n=1), marsh (n=2), stream (n=2), and stream-marsh (n=1) types. The environmental factors revealed to have the greatest influence on the species diversity of emergent fish were maintenance and repair, installation of reservoirs, and construction of artificial wetlands around them. The present study offers basic information on the diversity of fish species in different Wetland Protected Area types that can be used to inform conservation and management decisions for WPA.

Analysis of Runoff Characteristics of Non-point Sources Pollutant and Application of BMP Using BASINS/WinHSPF Model (BASINS/WinHSPF 모형을 이용한 비점오염물질 유출특성 분석과 최적관리기법 적용)

  • Kim, Min Joo;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.88-100
    • /
    • 2014
  • This study analyzed runoff characteristics of non-point sources pollutant and evaluated removal of pollution by BMP(Best Management Practice) using BASINS/WinHSPF model. Hourly meterological data including input data was provided from 2010 to 2011 year to run HSPF model in Miho stream watershed. As the results of calibration and validation of the model, the model could be successfully performed to simulate the flow and water quality parameters. The apprehensive area of non-point source pollution was chosen by non-point source pollution per area of a tributary to the Miho stream and applied constructed wetland in area chosen. Three scenarios were based on installation area of an constructed wetland and HSPF model would be applied to estimate the pollutant removals through the constructed wetland. The removal rates of pollutants through the constructed wetland were estimated with the runoff and water quality parameters by the comparisons of before and after the constructed wetland application.

Ecological Studies of Fauna in and around Do-rim Urban Streams (도림천 및 주변지역에 서식하는 육상동물상에 관한 생태학적 연구)

  • Lee, Sang-Don
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.105-113
    • /
    • 2009
  • Wetland ecosystem is one of the most productive one in nature. Wetland is an areas in which transit between terrestrial and stream ecosystem. This study aims at identifying fanua (birds, mammals, amphibians and reptiles) in urban stream of Dorim. A total of 3 orders, 6 families and 9 species for mammals; 17 families, 30 species of birds; 3 families and 4 species of amphibians and 2 families and 3 species of reptiles were reported. This is a through study for species identification in Dorim steams. This study suggested that various organisms were found around Dorim stream and this study will better serve as a stepping stone for wetland restoration and establishment of biotope where organisms breed and survive.

  • PDF

Analysis of 4-year experimental data from water quality improvement of inflow stream in estuary using wetland (인공습지를 이용한 하구담수호 유입하천수의 4년간 실험결과 분석)

  • Kim, Hyung-Chul;Yoon, Chun-Gyeong;Han, Jung-Yoon;Lee, Sae-Bom;Shin, Hyun-Bhum
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.557-562
    • /
    • 2005
  • The field scale experiment was performed to examine the effect of plant coverage on the constructed wetland performance and recommend the optimum development and management of macrophyte communities. Four sets(each set of 0.88ha) of wetland (0.8ha) and pond(0.08ha) systems were used. Water flowing into the Seokmoon estuarine reservoir from the Dangjin stream was pumped into wetland system. Water depth was maintained at $0.3{\sim}0.5m$ and hydraulic retention time was managed to about $2{\sim}5$ days; emergent plants were allowed to grow in the wetlands. After three growing seasons of the construction of wetlands, plant coverage was about 95%, even with no plantation, from bare soil surfaces at the initial stage. Dead vegetation affected nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. Biomass harvesting is not a realistic management option for most constructed wetland systems because it could only slightly increase the removal rate and provide a minor nitrogen removal pathway due to lack of organic carbon.

  • PDF

Studies on the current status of ecosystem and ecological parks in Anyang Stream (안양천 및 주변지역의 생태계 현황 및 생태공원 조성방안 연구)

  • Lee, Sang-Don
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.145-153
    • /
    • 2010
  • An-yang stream is a branch stream connecting to Han river and regarded as a national stream. This study chose the representative stream of An-yang and identified vegetation and flora. The ecological survey aimed at identifying indicator of urban streams for measuring to protect urban areas and to promote wetland conservation. A total of 266 species were identified into 35 Orders, 78 Families. The introduced species of Sicyo angulatus need a special treatment to reduce the population. The wetland vegetation is quite various and we suggested 11 different vegetation zones depending on introduced species and amenity between human and nature, This will lead to blue-network to crease favorable environment and manage important species for this region.

Water Purification and Ecological Restoration Effects of the Keumeo Stream Sustainable Structured wetland Biotop (SSB) System Established on the Floodplain of Kyungan Stream (경안천 고수부지에 조성한 금어천 생태적수질정화비오톱 시스템의 수질정화 및 생태복원 효과)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.23-35
    • /
    • 2010
  • A Sustainable Structured wetland Biotop (SSB) system was constructed on the floodplain of Kyungan stream in December, 2006. It purifies polluted water of Keumeo stream which flows into the stream. Water were sampled once a month at inlet and outlet from December, 2007 to December, 2008. $BOD_5$, SS, T-N and T-P were analyzed. Plant and fish species of the system were monitored twice during the period. Average influent and effluent BOD5 concentration was 6.2 and 2.2 mg/L, respectively and BOD5 removal was 50.8%. SS concentration of influent and effluent was averaged 10.1mg/L and 1.5mg/L, respectively and SS abatement amounted to 77.0%. Average influent and effluent T-N concentration was 4.9mg/L and 2.9 mg/L, respectively and T-N retention was 50.8%. T-P concentration of influent and effluent was averaged 0.386mg/L and 0.107mg/L, respectively and T-P removal amounted to 77.0%. Twenty two plant species were naturally introduced into the system, however, they didn't make up a significant portion of the plant populations compared with the planted species. Dominant plant species were in the following order; Phragmites communis > Typha latifolia > Iris pseudoacorus > Persicaria thunbergii. Five families and 15 species of fish were observed in the system including Chinese minnow (Moroco oxycephalus) which inhabits in clean water. Six more fish species were monitored in the system compared with ones living in Kyungan stream. Amphibia and reptiles accounted for 11 species of 4 orders and 7 families including Korean Salamander (Hynobius leechi) which also lives in cleanwater.

Hydraulic Residence Time in a Prototype Free Water Surface Constructed Wetland

  • Lee, Kyung-Do;Kwun, Soon-Kuk;Kim, Seong-Bae;Cho, Young-Hyun;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.6-11
    • /
    • 2005
  • A prototype surface flow constructed wetland was built in the upstream area of reclaimed tidal lands to improve the water quality of Lake Sihwa by treating severely polluted stream water. In this study, a tracer test using rhodamine-WT was performed to investigate the flow characteristics and to quantify the observed hydraulic residence time (HRT) for a high-lying cell in the Banwol wetland of the Sihwa constructed wetland. The tracer test indicated that even if flow was mainly observed in the open water area of the Banwol wetland, water flowed continuously in the vegetative area and there was no dead zone. The calculated HRT (51.3 hrs), calculated by dividing the wetland volume by the wetland inflow, exceeded the observed HRT (38.7 hrs), since the short-circuiting of flux resulting from irregular topography and vegetation was not reflected in the calculated HRT. The exit tracer concentration curves were reproduced well by both the plug flow with dispersion and tanks-in-series models, indicating that the performance of the Banwol wetland can be estimated accurately using these models.