• Title/Summary/Keyword: Stream flow monitoring

Search Result 151, Processing Time 0.028 seconds

Assessment of Ecological Flowrate and Fish Community to Weir Type in Stream (하천에서 보 형태에 따른 어류군집 구조 및 생태유량 평가)

  • Hur, Jun Wook;Jang, Chang Lae;Kim, Kyu Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.339-347
    • /
    • 2017
  • The objectives of this study were to analyze ecological characteristics of fish compositions and estimate the optimal ecological flow using the physical habitat simulation system (PHABSIM) in Wonju stream and Boseong river. We sampled fishes using two gears such as casting net and kicknet to determine fish distribution and also measured flow velocity, water depth, bed material at the point where fish collected. Total number of species and individuals sampled were 20 and 2,104, respectively and dominant species was Zacco platypus (39.7%) and subdominant species was Z. koreanus (RA: 15.8%) in Wonju stream. In Boseong river, collected fishes were 1,638 individuals, 28 species. Dominant and sub-dominant species was Z. platypus (RA: 22.0%) and Microphysogobio yaluensis (RA: 17.2%), respectively. For calculating habitat suitability index (HSI), we selected Z. platypus as representative fish species and analyzed water depth and flow velocity. Water depth and flow velocity were 0.2-0.6 m, 0.1-0.3 m/s, respectively in Wonju stream and 0.3-0.6 m, 0-0.3 m/s, respectively in Boseong river. According to the analysis of ecological flow simulation, optimal flow was 1.1 cms and 0.3 cms in Wonju stream and 0.4cms, 2.2cms in Boseong river at up and down stream respectively. WUA (Weighted Usable Area) was 9.5%, 26.6% in Wonju stream and 34.8%, 53.3% in Boseong river at up and down stream respectively.

Respiratory air flow measuring technique without sensing element on the flow stream (호흡경로 상에 감지소자가 없는 새로운 호흡기류 계측기술)

  • Lee, In-Kwang;Park, Jun-Oh;Lee, Su-Ok;Shin, Eun-Young;Kim, Kyung-Chun;Kim, Kyung-Ah;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • Cardiopulmonary resuscitation(CPR) is performed by artificial ventilation and thoracic compression for the patient under emergent situation to maintain at least the minimum level of respiration and blood circulation for life survival. Quality of the pre-hospital CPR not only significantly affects the patient's survival rate but also minimizes side effects caused by CPR. Good quality CPR requires monitoring respiration, however, traditional respiratory air flow transducers cannot be used because the transducer elements are located on the flow axis. The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the CPR devices. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object was placed on the flow stream, but still the flow rate could be evaluated. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999 (P<0.0001) and the mean relative error<1 %. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

Hydrological Characteristics of the Naeseong Stream before the Operation of Yeongju Dam, Korea (영주댐 운영 전 내성천의 수문 특성)

  • Kim, Donggu;Lee, Chanjoo
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.1
    • /
    • pp.3-11
    • /
    • 2017
  • In this study, change in vegetation on bars was analyzed using the data on hydrology and river morphology with on-site photographic monitoring data for the sites of interest of the Naeseong Stream during the period from March 2013 to July 2016 when the impoundment of Yeongju Dam began. The effect of flow condition on burial and removal of vegetation covered on bar surfaces was elucidated by comparison of on-site photographic monitoring data with continuous water level plotted with on the cross-section profile. In 2014 burial happened due to late flood, while July flood caused burial and removal in 2016. On the contrary vegetation increased in 2015 due to low flow without flood. Results of this study showing natural changes in vegetation will be reference to changes which is expected to be caused by dam impoundment.

Calculation of Pollutant Loadings from Stream Watershed Using Digital Elevation Model and Pollutant Load Unit Factors (발생부하원단위와 수치표고모형을 이용한 하천유역 오염부하량 산정)

  • Yang, Hong-Mo;Kim, Hyuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.22-31
    • /
    • 2001
  • The purpose of this study is to compare calculated pollutant loadings using pollutant load unit factors and vector type coverage, and expected mean concentration(EMC) and raster type of digital elevation model(DEM). This study is also focusing on comparison of the advantages and the disadvantages of the two methods, and seeking for a method of calculation of pollutant loadings using DEM. Estimation of pollutant inputs using pollutant load unit factors has limitations in identifying seasonal variations of pollutant loadings. Seasonal changes of runoffs should be considered in the calculation of pollutant loadings from catchments into reservoirs. Evaluation of pollutant inputs using runoff-coefficient and EMC can overcome these drawbacks. Proper EMC and runoff-coefficient values for the Koeup stream catchments of the Koheung estuarine lake were drawn from review of related papers. Arc/Info was employed to establish database of spatial and attribute data of point and non-point pollutant sources and characteristics of the catchments. ArcView was used to calculate point and non-point pollutant loadings. Pollutant loads estimated with either unit factors-coverages, i.e., pollutant load unit factors and vector coverages f point sources and land use, or EMC and digital elevation mode(DEM) were compared with stream monitoring loads. We have found that some differences were shown between monitoring results and estimated loads by Unit Factors-Coverage and EMC-DEM. Monthly variations of pollutant loads evaluated with EMC-DEM were similar to those with monitoring result. The method using EMC-DEM can calculate accumulated flows and pollutant loads and can be utilized to identify stream networks. A future research on correcting the difference between vector type stream using flow direction grid and digitalizing vector type should be conducted in order to obtain more exact calculation of pollutant loadings.

  • PDF

A Study on the Selection of the Total Pollution Load Management at Tributaries by Evaluation of Water Quality Volatility: Case Study for Chungcheongnam-do (수질변동성 평가를 통한 지류총량제 도입 대상유역 선정에 관한 연구: 충청남도를 중심으로)

  • Jeongho Choi;Hongsu Kim;Byunguk Cho;Sanghyun Park;Mukyu Lee;Byeonggu Lee;Uram Kang
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.5
    • /
    • pp.377-389
    • /
    • 2023
  • Chungcheongnam-do has been measuring the flow rate and water quality of streams in the province once a month since 2011 in order to water environment policies. Based on the results, after evaluating the coefficient of variation and the tendency of the water quality trend by using the Mann-Kendall test and Sen's Slope for each stream, the streams subject to priority introduction of Total Pollution Load Management at Tributaries were selected through the Stream Grouping Method. The water quality trend analysis results for 125 streams using the Mann-Kendall test and Sen's Slope were evaluated as streams showing a tendency of deteriorating water quality Biochemical oxygen demand (BOD): 13 streams, Total Phosphorus (T-P): 16 streams). Streams with deteriorating water quality were classified into A-D groups using the Stream Grouping Method. Group A, which has a high flow rate and high water quality, is a stream that requires priority management, and was selected as a stream for introduction of Total Pollution Load Management at Tributaries. There are 7 streams that need to be introduced into the BOD category, and there are 7 streams that need to be introduced into the T-P category. In this study, based on flow and water quality monitoring data accumulated over a long period of time (2011-2022), statistical techniques are used to select watersheds in which water quality is deteriorating. Accordingly, it is expected that it will be useful in establishing a water quality improvement plan in the future.

Investigation on Physical Habitat Condition of Korean Chub (Zacco koreanus) in Typical Streams of the Han River (한강의 대표적 하천에 서식하는 참갈겨니 (Zacco koreanus)의 물리적 서식조건에 관한 연구)

  • Hur, Jun Wook;Seo, Jinwon
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.207-215
    • /
    • 2011
  • In order to establish fundamental data for stream restoration and environmental flow, we investigated physical habitat conditions of Korean chub (Zacco koreanus) in the typical streams of Han River. Field monitoring including fish sampling was conducted from September 2008 to April 2010. A total number of fish caught in the 8 sites was 3,421 representing 8 families 31 species, and 17 species (54.8%) including Korean shinner (Coreoleuciscus splendidus) and Z. koreanus were Korean endemic species during the study period. The most frequently found species in number was pale chub (Z. platypus, 25.7%) followed by Z. koreanus (22.8%) and Microphysogobio longidorsalis (16.8%). Numbers of Z. Koreanus ranged from 8 to 10 cm of total length were the highest in size distribution of their population in all sites. They were widely found in ranges of flow velocity (0.2~0.9 m/sec, 89.6%), water depth (0.3~0.9 m, 91.6%), and different types of substrates except for silt, and they tended to prefer run (58.1%) and riffle (33.7%) with cobble bed (47.0%) microhabitat. Most of upper streams in Korea consist of riffles and runs that are repeatedly followed by another one. However, stream channelization and leveling have caused reduction of habitat diversity. Therefore, it is necessary to make an effort on stream rehabilitation with evaluation of physical habitat condition by indicator species in order to maintain biodiversity and perform ecological restoration.

열추적자를 이용한 지하수-하천수 혼합대 연구

  • Kim Gu-Yeong;Jeon Cheol-Min;Kim Tae-Hui;Seong Hyeon-Jeong;O Jun-Ho;Kim Yong-Je;Jeong Jae-Hun;Park Seung-Gi
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.277-281
    • /
    • 2006
  • A study on stream-groundwater exchange was performed using head and temperature data of stream water, streambed, and groundwater. Groundwater level and temperature were obtained from multi-depth monitoring wells in small-scale watershed. In the summer time, time series of temperatrue data at streambed and groundwater were monitored for three months. In the winter time, we measured the temperature gradient between stream water and streambed. The observed data showed three typical types of temperature characteristics. First, the temperature of streambed was lower than that of stream water; second, the temperature of streambed and stream water was similar; and last, the temperature of streambed was higher than that of stream water. The interconnections between the stream and the streambed were not homogeneously distributed due to weakly developed sediments and heterogeneous bedrock exposed as bed of the stream. The temperature data may be used in formal solutions of the inverse problems to estimate groundwater flow and hydraulic conductivity.

  • PDF

Estimating Groundwater Recharge using the Water-Table Fluctuation Method: Effect of Stream-aquifer Interactions (지하수위 변동법에 의한 함양량 산정: 하천-대수층 상호작용의 영향)

  • Koo, Min-Ho;Kim, Tae-Keun;Kim, Sung-Soo;Chung, Sung-Rae;Kang, In-Oak;Lee, Chan-Jin;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.5
    • /
    • pp.65-76
    • /
    • 2013
  • The water-table fluctuation (WTF) method has been often used for estimating groundwater recharge by analysis of waterlevel measurements in observation wells. An important assumption inherent in the method is that the water level rise is solely caused by precipitation recharge. For the observation wells located near a stream, however, the water-level can be highly affected by the stream level fluctuations as well as precipitation recharge. Therefore, in applying the WTF method, there should be consideration regarding the effect of stream-aquifer interactions. Analysis of water-level hydrographs from the National Groundwater Monitoring Wells of Korea showed that they could be classified into three different types depending on their responses to either precipitation recharge or stream level fluctuations. A simple groundwater flow model was used to analyze the errors of the WTF method, which were associated with stream-aquifer interactions. Not surprisingly, the model showed that the WTF method could greatly overestimate recharge, when it was used for the observation wells of which the water-level was affected by streams. Therefore, in Korea, where most groundwater hydrographs are acquired from wells nearby a stream, more caution is demanded in applying the WTF method.

Application of Automatic Stormwater Monitoring System and SWMM Model for Estimation of Urban Pollutant Loading During Storm Events (빗물 자동모니터링장치와 SWMM 모델을 이용한 강우시 도시지역 오염부하량 예측에 관한 연구)

  • Seo, Dongil;Fang, Tiehu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.373-381
    • /
    • 2012
  • An automatic flow and water quality monitoring system was applied to estimate pollutant loads to an urban stream during storm events in DTV (Daeduk Techno Valley), Daejeon, Korea. The monitoring system consists of rainfall gage, ultrasonic water level meter, water quality sensors for DO, temperature, pH, conductivity, turbidity and automatic water sampler for further laboratory analysis. All data are transmitted through on-line system and the monitoring system is designed to be controlled manually in the field and remotely from laboratory computer. Flow rates were verified with field measurements during storm events and showed good agreements. Automatic sampler was used to collect real time samples and analyzed for BOD, COD, TN, TP, SS and other pollutant concentrations in the laboratory. SWMM (Storm Water Management Model) urban watershed model was applied and calibrated using the observed flow and water quality data for the study area. While flow modeling results showed good agreement for all events, water quality modeling results showed variable levels of agreement. These results indicate that current options in the SWMM model to predict pollutant build up and wash-off effects are not sufficient to satisfy modeling of all the rainfall events under study and thus need further modification. This study showed the automatic monitoring system can be used to provide data to assist further refinement of modeling accuracy. This automatic stormwater monitoring and modeling system can be used to develop basin scale water quality management strategies of urban streams in storm events.

Modeling and Interoperability Test Case Generation of a Real-Time QoS Monitoring Protocol

  • Chin, Byoung-Moon;Kim, Sung-Un;Kang, Sung-Won;Park, Chee-Hang
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.52-64
    • /
    • 1999
  • QoS monitoring is a kind of real-time systems which allows each level of the system to track the ongoing QoS levels achieved by the lower network layers. For these systems, real-time communications between corresponding transport protocol objects is essential for their correct behavior. When two or more entities are employed to perform a certain task as in the case of communication protocols, the capability to do so is called interoperability and considered as the essential aspect of correctness of communication systems. This paper describes a formal approach on modeling and interoperability test case generation of a real-time QoS monitoring protocol. For this, we specify the behavior of flow monitoring of transport layer QoS protocol, i.e., METS protocol, which is proposed to address QoS from an end-to-end's point of view, based on QoS architecture model which includes ATM net work in lower layers. We use a real-time Input/Output finite State Machine to model the behavior of real-time flow monitoring over time. From the modeled real-time I/OFSM, we generate interoperability test cases to check the correctness of METS protocol's flow monitoring behaviors for two end systems. A new approach to efficient interoperability testing is described and the method of interoperability test cases generation is shown with the example of METS protocol's flow monitoring. The current TTCN is not appropriate for testing real-time and multimedia systems. Because test events in TTCN are for message-based system and not for stream-based systems, the real-time in TTCN can only be approximated. This paper also proposes the notation of real-time Abstract Test Suite by means of real-time extension of TTCN. This approach gives the advantages that only a few syntactical changes are necessary, and TTCN and real-time TTCN are compatible. This formal approach on interoperability testing can be applied to the real-time protocols related to IMT-2000, B-ISDN and real-time systems.

  • PDF