• Title/Summary/Keyword: Stream flow monitoring

Search Result 151, Processing Time 0.025 seconds

Study on Habitat Selection of Odontobutis interrupta using PIT Telemetry (PIT telemetry를 이용한 얼록동사리의 서식지 선택 연구)

  • Jun-Wan Kim;Kyu-Jin Kim;Beom-Myeong Choi;Ju-Duk Yoon;Min-Ho Jang
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.294-304
    • /
    • 2022
  • This study carried out from March 2021 to October 2021 in the upper part (St. 1) and middle part (St. 2) section of Yongsu stream, a branch of the Geum river, using PIT telemetry to understand the movement patterns and habitat characteristics of Odontobutis interrupta, a Korean endemic species. O. interrupta collection was used kick net (5×5 mm) and fish trap (5×5 mm). After collecting fish, PIT tag insertion was performed immediately in the site. Reader (HPR Plus Reader, biomark, USA) and portable Antenna (BP Plus Portable Antenna, biomark, USA) were used for detection of fish to monitoring the tagged O. interrupta. As a result of PIT telemetry applied to 70 individuals, mean movement distance was 36.5 (SE, ±6.6) m. There was a significant difference between total length and movement distance (P≤0.05). O. interrupta was mainly identified in average water depth, 36.2±1.9 cm, average water velocity, 0.03±0.07 m s-1 and average distance from watershed, 4.4±0.3 m. Extent of rock used for habitat was varied from 32 to 4,000 cm2. There was no statistical difference between the area of the first selected rock and the area of the after selected rock (P>0.05). but there was significant difference between total length and the area of the rock except for detection before 24 hours (P<0.01). Therefore, to restore the habitat, it is considered necessary to create various substrate structures by providing various habitat environments (water depth, flow rate, stone, etc.) for each individual size.

Properties of Wildbirds Habitat according to Biotope Types at Seom River and Wonju Stream (원주시 섬강, 원주천의 비오톱유형별 야생조류 서식특성 연구)

  • Noh, Tai-Hwan;Pi, Jae-Hwang;Choi, Jin-Woo;Lee, Kyong-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.6
    • /
    • pp.676-689
    • /
    • 2013
  • This study is to understand the current situation of Wonju Stream, which flows through Wonju, Kangwon-do, and Seom River, the national river located outside of Wonju, by investigating all river areas using biotope type. Also, this research looked into the relationship between biotope and appearance of wild birds by investigating the location of their appearance. Biotope groups are 'scale', 'shape', and 'landscape'. And, biotope types are 'moisture', 'physical environment', and 'existence of vegetation'. Biotope subtypes are 'river area', 'physical environment', 'vegetation type', and 'usage of land'. Seom River is classified as 21 different sections, and Wonju Stream is classified as 19 different sections. Wild birds are investigated on breeding season, which was January and May of 2008. By marking each bird's location of appearance, it figured out properties of biotope according to the location of bird's appearance. 31 species, 795 birds in spring were founded, and 49 species, 4,348 birds are founded in winter at Seom River area. Also, 34 species, 427 birds in spring, and 33 species, 3,442 birds are founded in winter at Wonju Stream area. In winter, 26 species, 547 birds, and in spring, 12 species, 72 birds at natural river with estuaries in confluence of Seom River area are founded. Also, 34 species, 1412 birds in winter, and 24 species, 341 birds in spring are founded at natural river with estuaries and wetland plants. This means that because agricultural rivers have wide river width, slow flow speed, and many different types of biotope, these rivers can be good habitats for wild birds. The precise investigations and classifications of biotope, which especially are hard for linear rivers, were done to understand the whole and current situation of rivers. Furthermore, the data that shows the locations of wild birds can basically be used for a recovery of biological habitats, a constructing of ecological streams, a river-maintenance, and an enhancement of biodiversity of Wonju. Also, because the types of biotope are altered by rain, a continuous monitoring for maintaining ecosystem of rivers are highly needed.

Application of BASINS/WinHSPF for Pollutant Loading Estimation in Soyang Dam Watershed (소양강댐 유역의 오염부하량 산정을 위한 BASINS/WinHSPF 적용)

  • Yoon, Chun-Gyeong;Han, Jung-Yoon;Jung, Kwang-Wook;Jang, Jae-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.201-213
    • /
    • 2007
  • In this study, the Batter Assessment Science Integrating point and Nonpoint Sources (BASINS 3.0)/window interface to Hydrological Simulation Program-FPRTRAN (WinHSPF) was applied for assessment of Soyang Dam watershed. WinHSPF calibration was performed using monitoring data from 2000 to 2004 to simulate stream flow. Water quality (water temperature, DO, BOD, nitrate, total organic nitrogen, total nitrogen, total organic phosphorus and total phosphorus) was calibrated. Calibration results for dry-days and wet-days simulation were reasonably matched with observed data in stream flow, temperature, DO, BOD and nutrient simulation. Some deviation in the model results were caused by the lack of measured watershed data, hydraulic structure data and meteorological data. It was found that most of pollutant loading was contributed by nonpoint source pollution showing about $98.6%{\sim}99.0%$. The WinHSPF BMPRAC was applied to evaluate the water quality improvement. These scenarios included constructed wetland for controlling nonpoint source poilution and wet detention pond. The results illustrated that reasonably reduced pollutant loadin. Overall, BASINS/WinHSPF was found to be applicable and can be a powerful tool in pollutant loading and BMP efficiency estimation from the watershed.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

Analysis of Specific Contaminated Status and Pollutant Loads Contribution Rate of the Tributaries in Gumho and Nam River Basin (금호강, 남강 중권역 지류·지천의 상세오염 현황 및 오염기여율 조사)

  • Na, Seungmin;Kwon, Heongak;Kim, Gyeong Hoon;Shin, Dongseok;Im, Tae Hyo
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.363-377
    • /
    • 2016
  • This study was investigated the pollutant load, contamination properties, pollution condition of the fine parts of tributary, the influence of Nakdong river watershed and etc. in the tributaries. The contaminated tributaries were that among the Kumho and Nam river or were too far from site of water quality monitoring stations, regularly. As a result, the water quality level was almost similar between Nam and Kumho River, except for certain parameter including TN(Total Nitrogen), Chl-a(Chlorophyll-a) and SS(Suspended Solid) in which Kumho river were 20~120%. The point discharge load(kg/day) and load density ($kg/day/km^2$) of tributaries were different the pollution level according to the flow-rate ($m^3/sec$) and stream influence area($km^2$), and the difference of these was observed highly at Nam river. Specific contamination investigation of tributaries in Nam and Kumho river watershed was conducted from two to nine points of the fine parts of tributaries depending on the confluence sites and shapes. This result observed high at the Dalseocheon and Uriyeongcheon, respectively. Beside, the pollutant load contribution rate of Nakdong watershed was high about 10% at the Dalseocheon and Uiryeongcheon. This was due to the differences of the environments about the industrial complex, metropolis residence property, agricultural cultivation, livestock pen and the downstream of non-point source.

Establishment of Fish Monitoring Technique for Estimation of Environmental Flow and Stream Health Assessment (환경유량산정 및 하천건강성평가를 위한 어류모니터링 기법 확립)

  • Seo, Jin-Won;Lim, In-Soo;Kim, Gee-Hyoung;Kim, Jyong-Gon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.454-459
    • /
    • 2008
  • 하천의 건강성을 유지하고 수환경의 정상적인 기능을 회복하기 위해서는 수서생물들에게 알맞은 서식환경 조성, 점오염원 및 비점오염원 차단, 적절한 유량과 같은 다양한 조건이 요구된다(Gore 1895; Gore et al. 1989). 이 중 유량은 수생태계를 이루는 물리적, 화학적, 생물학적 요소들 가운데 기본이 된다고 할 수 있다(Bunn and Arthington 2002; Nilsson and Svedmark 2002; Arthington et al. 2006). 국내 하천관리를 위한 하천유지유량의 산정에서 고려하고 있는 갈수량, 하천생태계, 하천수질 등 8가지 항목 가운데 최근 생태계와 환경에 대한 사회적 국민적 관심이 증가하면서 하천생태계를 고려한 환경유량의 중요성이 부각되었으나, 현실적으로 생태계를 고려한 정량적 조사자료 구축 및 환경유량산정 등의 객관적 자료는 미흡한 실정이다. 특히, 과거 해당수계 및 하천의 어류분포 현황 파악을 중심으로 이루어진 어류조사는 환경유량 산정 시 기초자료로 활용하거나 직 간접적으로 어류상이 변화하는 원인을 분석하는 자료로 활용하기에는 객관성이 결여되어 있다고 할 수 있다. 어류모니터링 기법 확립은 환경유량산정에 있어 요구되는 정량화와 자료의 객관성을 높이기 위한 작업으로 문헌조사와 청문조사를 포함한 사전조사, 현장조사, 조사결과 정리, 고찰 등의 총 4가지 과정을 기본으로 실시하는 것으로 정하였다(그림. 1), 청문조사와 문헌조사 등의 사전조사를 통해 기존자료를 확보하고 현장의 답사, 조사구간, 방법, 시기 등의 선정을 통해 두 번째 단계인 현장조사의 효율성을 높였다. 현장조사에서는 어류분포 현황 외에도 해당지점의 하상재료, 식생, 유속, 수심, 수질 등 조사지점의 수 환경요소 전반을 기록하여 어류의 서식과 물리 화학적 수환경과의 상호관계를 파악하고자 하였다. 마지막으로 고찰단계에서는 조사 대상 지역 전반적인 어류상 특징과 함께 보호종, 한국고유종, 외래도입종 출현유무 및 빈도, 물리적, 화학적 수환경의 특징, 수환경에 따른 어류상 특징 등의 분석과 함께 조사하천의 건강성을 평가하고자 하였다. 본 연구는 어류모니터링 기법 확립을 통해 환경유량산정 시 요구되는 객관적 기초자료를 구축하고 나아가 오염물질 유입, 하천정비사업 등의 각종 교란요인에 의해 발생할 수 있는 문제점들에 능등적으로 대처하고 교란에 의해 악화된 수환경의 복원을 위해 요구되는 객관적 기초자료 생산에 목적이 있다.

  • PDF

Characteristics of Waterlevel Fluctuation in Riverside Alluvium of Daesan-myeon, Changwon City (창원시 대산면 강변충적층의 지하수위 변동 특성)

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Kim, Hyoun-Su;Son, Keon-Tae;Cha, Yong-Hoon;Jang, Seong;Baek, Keon-Ha
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.457-474
    • /
    • 2003
  • This study aims to elucidate characteristics of groundwater level fluctuation at riverbank filtration sites in Daesan-myeon, Changwon City. Groundwater level fluctuation, river water level change and stream-aquifer interaction are very important to estimate optimal discharge rate of the pumping well. Water level contours from February 2003 to October 2003 show normal decreasing trend toward the Nakdong river with the hydraulic gradient of 0.008. However, flow reversion occurs when groundwater is discharged at the pumping wells or rise of the Nakdong river by rainfall. The fluctuation of the Nakdong river ranges 0 - 10 m msl. Autocorrelation analysis was conducted to the groundwater levels measured on the six monitoring wells (DS1, DS2, DS3, DS4, DS6 and DS7). The analyzed waterlevel data can be grouped into three: group 1 (DS1 and DS3) represents strong linearity and long memory effect, group 2 (DS1 and DS6) intermediate linearity and memory, and group 3 (DS4 and DS7) weak linearity and memory. Waterlevels of group 1 wells are relatively closely related to the change of river-water level. Those of group 2 wells are largely affected by the pumping and the river-water level, and those of group 3 wells are strongly linked to pumping.

Fluvial Processes and Vegetation - Research Trends and Implications (하천과정과 식생 - 연구동향과 시사점)

  • Woo, Hyoseop;Cho, Kang-Hyun;Jang, Chang Lae;Lee, Chan Joo
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.89-100
    • /
    • 2019
  • We've reviewed existing studies on the interactions among vegetation, hydrology, and geomorphology in the stream corridors, adding one more factor of vegetation in the traditional area of hydro-geomorphology. Understanding of the interactions among those three factors is important not only academically but also practically since it is related intimately to the restoration of river corridor as well as management itself. Studies of this area started from field investigations in the latter part of the 20th century and focused on the flume experiments and then computer modelling in the 1990s and 2000s. Now, it has turned again to the field investigations of specific phenomena of the vegetative-hydrologic-geomorphologic interactions in detailed micro scales. Relevant studies in Korea, however, seem to be uncommon and far behind the international status quo in spite that practically important issues related directly to this topic have been emerged. In this study, we propose, based on the extensive literature review and authors' own knowledge and experiences, a conceptual diagram expressing the interactions among vegetation, flow (water), sediment, and geomorphology. Existing relevant studies in Korea since the 1990s are classified according to the categorization in the proposed diagrams and then briefly reviewed. Finally, considering the practical issues of riparian vegetation that have emerged recently in Korea, we propose areas of investigation needed in near future such as, among others, long-term and systematic field investigations and monitoring at multiple river corridors having different attributes on vegetative-hydrologic-geomorphologic interactions, including vegetative dynamics for succession.

A Tracer Study on Mankyeong River Using Effluents from a Sewage Treatment Plant (하수처리장 방류수를 이용한 추적자 시험: 만경강 유역에 대한 사례 연구)

  • Kim Jin-Sam;Kim Kang-Joo;Hahn Chan;Hwang Gab-Soo;Park Sung-Min;Lee Sang-Ho;Oh Chang-Whan;Park Eun-Gyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.11 no.2
    • /
    • pp.82-91
    • /
    • 2006
  • We investigated the possibility of using effluents from a municipal sewage treatment plant (STP) as tracers a tracer for hydrologic studies of rivers. The possibility was checked in a 12-km long reach downstream of Jeonju Municipal Sewage Treatment Plant (JSTP). Time-series monitoring of the water chemistry reveals that chemical compositions of the effluent from the JSTP are fluctuating within a relatively wide range during the sampling period. In addition, the signals from the plant were observed at the downstream stations consecutively with increasing time lags, especially in concentrations of the conservative chemical parameters (concentrations f3r chloride and sulfate, total concentration of major cations, and electric conductivity). Based on this observation, we could estimate the stream flow (Q), velocity (v), and dispersion coefficient (D). A 1-D nonreactive solute-transport model with automated optimization schemes was used for this study. The values of Q, v, and D estimated from this study varied from 6.4 to $9.0m^3/sec$ (at the downstream end of the reach), from 0.06 to 0.10 m/sec, and from 0.7 to $6.4m^2/sec$, respectively. The results show that the effluent from a large-scaled municipal STP frequently provides good, multiple natural tracers far hydrologic studies.

Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed (유역 유출과정과 지하수위 변동을 고려한 분포형 지하수 함양량 산정방안)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.19-32
    • /
    • 2007
  • In Korea, there have been various methods of estimating groundwater recharge which generally can be subdivided into three types: baseflow separation method by means of groundwater recession curve, water budget analysis based on lumped conceptual model in watershed, and water table fluctuation method (WTF) by using the data from groundwater monitoring wells. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, so these methods have various limits to deal with these characteristics. To overcome these limitations, we present a new method of estimating recharge based on water balance components from the SWAT-MODFLOW which is an integrated surface-ground water model. Groundwater levels in the interest area close to the stream have dynamics similar to stream flow, whereas levels further upslope respond to precipitation with a delay. As these behaviours are related to the physical process of recharge, it is needed to account for the time delay in aquifer recharge once the water exits the soil profile to represent these features. In SWAT, a single linear reservoir storage module with an exponential decay weighting function is used to compute the recharge from soil to aquifer on a given day. However, this module has some limitations expressing recharge variation when the delay time is too long and transient recharge trend does not match to the groundwater table time series, the multi-reservoir storage routing module which represents more realistic time delay through vadose zone is newly suggested in this study. In this module, the parameter related to the delay time should be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater table with observed one as well as to compare simulated watershed runoff with observed one. This method is applied to Mihocheon watershed in Korea for the purpose of testing the procedure of proper estimation of spatio-temporal groundwater recharge distribution. As the newly suggested method of estimating recharge has the advantages of effectiveness of watershed model as well as the accuracy of WTF method, the estimated daily recharge rate would be an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers and aquifers.