• Title/Summary/Keyword: Stream Surface

Search Result 820, Processing Time 0.032 seconds

Free-Stream Turbulence Effect on the Heat (Mass) Transfer Characteristics on a Turbine Rotor Surface (자유유동 난류강도가 터빈 동익 표면에서의 열(물질)전달 특성에 미치는 영향)

  • Lee, Sang-Woo;Park, Jin-Jae;Kwon, Hyun-Goo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1442-1446
    • /
    • 2004
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is employed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiments are carried out for two free-stream turbulence intensities of 1.2% and 14.7%. The high free-stream turbulence results in more uniform distributions of heat load on the both pressure and suction surfaces and in an early boundary-layer separation on the suction surface. The heat (mass) transfer enhancement on the suction surface due to the endwall vortices is found to be relatively small under the high free-stream turbulence.

  • PDF

Numerical Analysis of Transonic Laminar Flow in Turbomachinery Using Finite Volume Method(II) Flow on Relative Stream Surface (유한체적법을 이용한 터보기계 회전차 내부의 천이음속.층류 유동해석(II) 상대유면 유동해석)

  • 조강래;오종식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.452-457
    • /
    • 1993
  • For the calculation of transonic laminar relative flow fields on the axisymmetric H-S and B-B stream surfaces in turbomachinery, a finite volume method developed in Part (I) is extended. Energy equation is replaced for simplicity by the condition of constant rothalpy throughout the flow fields. For axisymmetric H-S flow the circumferential componets of absolute velocity are given in advance so that this component of momentum equations can be neglected. Some numerical results show good agreement with experimental data.

Stream Flow Analysis of Dry Stream on Flood Runoff in Islands (도서지역 건천의 홍수유출 시 흐름 해석)

  • Yang, Won-Seok;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.571-580
    • /
    • 2013
  • In this study, compared with the result of water surface elevation and water velocity on the establishment of river maintenance basic plan and result of HEC-GeoRAS based GIS, and after use the result of water surface elevation and velocity were observed in the Han stream on Jeju island, analysis 2 dimensional stream flow. the lateral hydraulic characteristics and curved channel of the stream were analyzed by applying SMS-RMA2 a 2 dimensional model. The results of the analysis using HEC-RAS model and HEC-GeoRAS model indicated that the distribution ranges of water surface elevation and water velocity were similar, but the water surface elevation by section showed a difference of 0.7~2.18 EL.m and 0.63~1.16 EL.m respectively, and water velocity also showed differences of maximum 1.58m/sec and 2.67m/sec. SMS-RMA2 analysis was done with the sphere of Muifa the typhoon as a boundary condition, and as a result, water velocity distribution was found to be 1.19 through 3.91 m/sec, and the difference of lateral water velocity in No. 97 through 99 the curved channel of the stream was analyzed to be 1.59 through 2.36 m/sec. In conclusion it is anticipated that the flow analysis of 2 dimension model of stream can reflect the hydraulic characteristics of the stream curved channel or width and shape, and can be applied effectively in the establishment of river maintenance basic plan or management and designing of stream.

Stream flow estimation in small to large size streams using Sentinel-1 Synthetic Aperture Radar (SAR) data in Han River Basin, Korea

  • Ahmad, Waqas;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.152-152
    • /
    • 2019
  • This study demonstrates a novel approach of remotely sensed estimates of stream flow at fifteen hydrological station in the Han River Basin, Korea. Multi-temporal data of the European Space Agency's Sentinel-1 SAR satellite from 19 January, 2015 to 25 August, 2018 is used to develop and validate the flow estimation model for each station. The flow estimation model is based on a power law relationship established between the remotely sensed surface area of water at a selected reach of the stream and the observed discharge. The satellite images were pre-processed for thermal noise, radiometric, speckle and terrain correction. The difference in SAR image brightness caused by the differences in SAR satellite look angle and atmospheric condition are corrected using the histogram matching technique. Selective area filtering is applied to identify the extent of the selected stream reach where the change in water surface area is highly sensitive to the change in stream discharge. Following this, an iterative procedure called the Optimum Threshold Classification Algorithm (OTC) is applied to the multi-temporal selective areas to extract a series of water surface areas. It is observed that the extracted water surface area and the stream discharge are related by the power law equation. A strong correlation coefficient ranging from 0.68 to 0.98 (mean=0.89) was observed for thirteen hydrological stations, while at two stations the relationship was highly affected by the hydraulic structures such as dam. It is further identified that the availability of remotely sensed data for a range of discharge conditions and the geometric properties of the selected stream reach such as the stream width and side slope influence the accuracy of the flow estimation model.

  • PDF

Automatic Surface Generation for Extrusion Die of Non-symmetric H-and U-shaped sections (비축대칭 H-형 및 U-형상의 압출금형 곡면의 자동생성)

  • 유동진;임종훈;양동열
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.572-581
    • /
    • 2003
  • In this paper, an automatic surface construction method based on B-spline surface and scalar field theory is proposed to generate the extrusion die surface of non-symmetric H-and U-shaped sections. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u-and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections. To verify the validity of the proposed method, automatic surface generation is carried out for extrusion die of non-symmetric H-and U-shaped sections.

Error Analysis for Electromagnetic Surface Velocity and Discharge Measurement in Rapid Mountain Stream Flow (산지하천의 전자파 표면유속 측정에 기반한 유량 및 유속 관측 오차 분석)

  • Kim, Dong-Su;Yang, Sung-Kee;Jung, Woo-Yul
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.543-552
    • /
    • 2014
  • Fixed Electromagnetic Wave Surface Velocimetry (Fixed EWSV) has been started to be used to measure flood discharge in the mountain stream, since it has various advantages such that it works well to continuously measure stream discharge even in the night time as well as very strong weather. On the contrary, the Fixed EWSV only measures single point surface velocity, thus it does not consider varying feature of the transverse velocity profile in the given stream cross-section. In addition, a conventional value of 0.85 was generally used as the ratio for converting the measured surface velocity into the depth-averaged velocity. These aspects could bring in error for accurately measuring the stream discharge. The capacity of the EWSV for capturing rapid flow velocity was also not properly validated. This study aims at conducting error analysis of using the EWSV by: 1) measuring transverse velocity at multiple points along the cross-section to assess an error driven by the single point measurement; 2) figuring out ratio between surface velocity and the depth-averaged velocity based on the concurrent ADCP measurements; 3) validating the capacity of the EWSV for capturing rapid flow velocity. As results, the velocity measured near the center by the fixed EWSV overestimated about 15% of the cross-sectional mean velocity. The converting ratio from the surface velocity to the depth-averaged velocity was 0.8 rather than 0.85 of a conventional ratio. Finally, the EWSV revealed unstable velocity output when the flow velocity was higher than 2 m/s.

Automatic Surface Generation for Extrusion Die of Non-symmetric H- and U-shaped Sections (비축대칭 H-형 및 U-형상의 압출금형 곡면의 자동생성)

  • 임종훈;유동진;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.318-321
    • /
    • 2003
  • In order to generate the extrusion die surface of non-symmetric H- and U-shaped sections, an automatic surface construction method based on B-spline surface and scalar field theory is proposed in this study. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u- and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections.

  • PDF

Automatic Surface Generation for Extrusion Die of Complicated Sections (복잡한 형상의 압출금형 곡면의 자동생성)

  • 임종훈;유동진;권혁홍;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.197-200
    • /
    • 2003
  • An automatic surface construction method based on B-spline surface and scalar field theory is proposed to generate the extrusion die surface of complicated sections in this paper. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u- and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections.

  • PDF

Effects of the Free-Stream Turbulence and Surface Trip Wire on the Flow past a Sphere (자유류 난류와 표면 트립 와이어가 구 주위 유동에 미치는 영향)

  • Son, Kwang-Min;Choi, Jin;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.187-190
    • /
    • 2006
  • In the present study, effects of tree-stream turbulence and surface trip wire on the flow past a sphere at $Re\;=\;0.4\;{\times}\;10^5\;{\sim}\;2.8\;{\times}\;10^5$ are investigated through wind tunnel experiments. Various types of grids are installed upstream of the sphere in order to change the tree-stream turbulence intensity. In the case of surface trip wire, 0.5mm and 2mm trip wires are attached from $20^{\circ}\;{\sim}\;90^{\circ}$ at $10^{\circ}$ interval along the streamwise direction. To investigate the flow around a sphere, drag measurement using a load cell, surface-pressure measurement, surface visualization using oil-flow pattern and near-wall velocity measurement using an I-type hot-wire probe are conducted. In the variation of free-stream turbulence, the critical Reynolds number decreases and drag crisis occurs earlier with increasing turbulence intensity. With increasing Reynolds number, the laminar separation point moves downstream, but the reattachment point after laminar separation and the main separation point are fixed, resulting in constant drag coefficient at each free-stream turbulence intensity. At the supercritical regime, as Reynolds number is further increased, the separation bubble is regressed but the reattachment and the main separation points are fixed. In the case of surface trip wire directly disturbing the boundary layer flow, the critical Reynolds number decreases further with trip wire located more downstream. However, the drag coefficient after drag crisis remains constant irrespective of the trip location.

  • PDF

Mass Conservative Fluid Flow Visualization for CFD Velocity Fields

  • Li, Zhenquan;Mallinson, Gordon D.
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1794-1800
    • /
    • 2001
  • Mass conservation is a key issue for accurate streamline and stream surface visualization of flow fields. This paper complements an existing method (Feng et al. 1997) for CFD velocity fields defined at discrete locations in space that uses dual stream functions to generate streamlines and stream surfaces. Conditions for using the method have been examined and its limitations defined. A complete set of dual stream functions for all possible cases of the linear fields on which the method relies are presented. The results in this paper are important for developing new methods for mass conservative streamline visualization from CFD and using the existing method.

  • PDF