• Title/Summary/Keyword: Stream Runoff

Search Result 506, Processing Time 0.036 seconds

Impacts of Nitrate in Base Flow Discharge on Surface Water Quality (질산성 질소 기저유출이 지표수 수질에 미치는 영향)

  • Kim, Geonha;Lee, Hosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.105-109
    • /
    • 2009
  • It is a well known fact that baseflow discharge of rainfall runoff impacts on water quality of surface water significantly. In this paper, impacts of nitrate discharged as base flow on stream water quality were studied by using a software, PULSE from USGS to calculate monthly ground water discharge from hydrograph. We used water quality and flow rate data for Ghapcehon2 site in Daejeon city for year 2005 as well as ground water quality data in the watershed acquired from government agencies. Agricultural and forestry land use are dominant for upstream of Ghapcheon2 in the watershed. Base flow contributes about 85~95% of stream flows during spring and fall while 25~38% of stream flow was induced by base flow during summer and winter. Monthly nitrate loading discharged as base flow for Ghapcheon2 was estimated by using averaged nitrate concentration of groundwater in the watershed. Nitrate loading induced by base flow at Ghapcheon2 was estimated as 5.4 ton of $NO_{3}{^-}-N/km^{2}$, which is about 60% of nitrate loading of surface water, 9.2 ton of $NO_{3}{^-}-N/km^{2}$. Seasonal variation of nitrate concentration of base flow was estimated by dividing monthly nitrate loading by monthly base flow discharge. Nitrate concentration of groundwater was increasing from rainy season. From this study, it can be understood that ground water quality monitoring is important for the proper manage of surface water quality.

Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed (유역 유출과정과 지하수위 변동을 고려한 분포형 지하수 함양량 산정방안)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.19-32
    • /
    • 2007
  • In Korea, there have been various methods of estimating groundwater recharge which generally can be subdivided into three types: baseflow separation method by means of groundwater recession curve, water budget analysis based on lumped conceptual model in watershed, and water table fluctuation method (WTF) by using the data from groundwater monitoring wells. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, so these methods have various limits to deal with these characteristics. To overcome these limitations, we present a new method of estimating recharge based on water balance components from the SWAT-MODFLOW which is an integrated surface-ground water model. Groundwater levels in the interest area close to the stream have dynamics similar to stream flow, whereas levels further upslope respond to precipitation with a delay. As these behaviours are related to the physical process of recharge, it is needed to account for the time delay in aquifer recharge once the water exits the soil profile to represent these features. In SWAT, a single linear reservoir storage module with an exponential decay weighting function is used to compute the recharge from soil to aquifer on a given day. However, this module has some limitations expressing recharge variation when the delay time is too long and transient recharge trend does not match to the groundwater table time series, the multi-reservoir storage routing module which represents more realistic time delay through vadose zone is newly suggested in this study. In this module, the parameter related to the delay time should be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater table with observed one as well as to compare simulated watershed runoff with observed one. This method is applied to Mihocheon watershed in Korea for the purpose of testing the procedure of proper estimation of spatio-temporal groundwater recharge distribution. As the newly suggested method of estimating recharge has the advantages of effectiveness of watershed model as well as the accuracy of WTF method, the estimated daily recharge rate would be an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers and aquifers.

Study on Analysis of the Proper Ratio and the Effects of Low Impact Development Application to Sewage Treatment District (하수처리구역 내 LID 적용에 대한 적정비율 및 효과분석 연구)

  • Shin, Hyun Suk;Kim, Mi Eun;Kim, Jae Moon;Jang, Jong Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1193-1207
    • /
    • 2013
  • Increase of impervious area caused by overdevelopment has led to increase of runoff and then the problem of flooding and NPS were brought up. In addition, as decrease of base flow made groundwater level to decline, a stream that dries up is issued. low impact development (LID) method which is possible to mimic hydrological water cycle, minimize the effect of development, and improve water cycle structure is proposed as an alternative. As introduction of LID in domestic increases, the study on small watershed is in process mainly. Also, analysis of property of hydrological runoff and load on midsize watershed, like sewage treatment district, is required, the study on it is still insufficient. So, area applying LID practices from watershed of Dongrae stream is pinpointed and made the ratio and then expand it to watershed of Oncheon stream. Among low impact development practices, Green Roof, Porous Pavement, and Bio- retention are selected for the application considering domestic situations and simulated with SWMM-LID model of each watershed and improvement of water cycle and reduction of non-point pollution loads was analysed. Improvement of water cycle and reduction of non-point pollution loads were analyzed including the property of rainfall and soil over long term simulation. The model was executed according to scenario based on combination of LID as changing conductivity in accordance with soil type of the watershed. Also, this study evaluated area of LID application that meets the efficiency of conventional management as a criteria for area of LID practices applying to sewer treatment district by comparing the efficiency of LID application with that of conventional method.

Influence of the Asian Monsoon on Seasonal Fluctuations of Water Quality in a Mountainous Stream (산간 계류성 하천의 계절적 수질변동에 대한 몬순강우의 영향)

  • Shin, In-Chul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.54-62
    • /
    • 2005
  • The present study was to determine how seasonal rainfall intensity influences nutrient dynamics, ionic contents, oxygen demands, and suspended solids in a lotic ecosystem. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of rainfall. Dissolved oxygen (DO) had an inverse function of water temperature (r = = = - 0.986, p<0.001). Minimum pH values of<6.5 were observed in the late August when rainfall peaked in the study site, indicating an ionic dilution of stream water by precipitation. Electrical conductivity (EC) was greater during summer than any other seasons, so the overall conductivity values had direct correlation (r = 0.527, p<0.01) with precipitation. Ionic dilution, however, was evident 4 ${\sim}$ 5 days later in short or 1 ${\sim}$ 2 weeks in long after the intense rain, indicating a time-lag phenomenon of conductivity. Daily COD values varied from 0.8 mg $L^{-1}$ to 7.9 mg $L^{-1}$ and their seasonal pattern was similar (r = 0.548, p<0.001) to that of BOD. Total nitrogen (TN) varied little compared to total phosphorus (TP) and was minimum in the base flow of March. In contrast, major input of TP occurred during the period of summer monsoon and this pattern was similar to suspended solids, implying that TP is closely associated (r = 0.890, p<0.01) with suspended inorganic solids. Mass ratios of TN : TP were determined by TP (r= -0.509, p<0.01) rather than TN (r= -0.209, p<0.01). The N : P ratios indicated that phosphorus was a potential primary limiting nutrient for the stream productivity. Overall data suggest that rainfall intensity was considered as a primary key component regulating water chemistry in the stream and maximum variation in water quality was attributed to the largest runoff spate during the summer monsoon.

Change in Fluorescence Characteristics of Dissolved Organic Matter at Inflow Stream per Catchment of Different Land Use (토지이용도가 다른 소유역별 유입하천에서 용존유기물 형광특성 변화)

  • Kim, Sea-Won;Oh, Jong-Min;Lee, Bo-Mi;Choi, Kwang-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.292-302
    • /
    • 2011
  • The Lake Sihwa watershed includes industrial, urban, and rural areas simultaneously. In this study, we analyzed the characteristics of dissolved organic matter (DOM) in spatial-temporal runoff patterns at representative sites having different land use in the watershed of Lake Sihwa. The result of synchronous and 3D-EEMs(3-Dimensional Excitation Emission Matrix Spectroscopy) analysis in 4TG (industrial area), fluorescence distribution and variation clearly appeared in the Fulvic-like fluorescence (FLF) and Humic-like fluorescence (HLF) regions along with the Protein-like fluorescence (PLF) region. A characteristic that Peak A (HLF) region fluorescence intensity did not decrease and the HLF region of fluorescence intensity and spatial-temporal changes clearly appeared during rainfall in AS (urban area). The results of fluorescence analysis in MS did not show great changes in PLF and FLF while showing that fluorescence intensity changes over time in the Terrestrial-like fluorescence (THLF) region increased greatly. In conclusion, our results showed significant differences in the runoff characteristics of DOM particularly in industrial, urban and rural area, and these differences should be considered for the efficient controlling of DOM in the watershed.

Dischatge Loads of Nonpoint Source Pollutant in the Upper Watershed of Inigation Reservoir - Case Study of the Goseong Reservoir - (농업용 저수지 상류유역의 비점원오염 유출부하량 산정 - 고성저수지를 대상으로 -)

  • Kim, Jin-Ho;Han, Kuk-Heon;Ryu, Jong-Soo;Jung, Goo-Bok;Kwun, Soon-Kuk
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.324-331
    • /
    • 2007
  • This study was conducted to evaluate the influence of pollutant loads on the water quality in the Goseong reservoir from May 2005 to October 2006. Annual total runoff at the Goseong-cheon watershed was 968.0 mm in 2005, 382.6 mm in 2006, respectively. The mean concentration of BOD, COD and SS in the stream were 2.28, 6.03, 46.97 mg/L in rainy seasons and 0.95, 2.14, 6.05 mg/L in dry seasons at SWT C sub-watershed. Total-N concentrations ranged from 2.60 to 3.18 mg/L at SWT C sub-watershed, which was generally higher than the quality standard of agricultural water (1.0 mg/L). Total-P concentrations ranged from 0.044 to 0.130 mg/L at SWT C sub-watershed. Measured pollutant loads in the SWT C sub-watershed were 36.7 kg/day of BOD, 72.3 kg/day of T-N and 2.3 kg/day of T-P in 2005 at SWT C sub-watershed, 63.9 kg/day of BOD, 82.8 kg/day of T-N and 1.1 kg/day of T-P in 2006 at SWT C sub-watershed, respectively. In the analysis of the effluent characteristics for NPS pollutants, it appeared that the loading rates of effluent from SWT C watershed were, respectively, BOD 62.3%, T-N 69.6%, T-P 71.1%, SS 70.1% during the rainy season in 2006. The calculated T-N daily pollutant loadings by the unit loading factor method from each sub-watershed were much greater than observed, but the calculated T-P daily pollutant loadings much lesser than observed.

Stream Discharge Estimation by Runoff Component Analysis on the Control Point (유출성분 분석에 의한 제어지점의 유출량 산정)

  • Lee, Sang-Jin;Hwang, Man-Ha;Lee, Bae-Sung;Park, Joo-Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.785-789
    • /
    • 2006
  • 유역 수자원의 효율적인 관리 및 배분을 위해서는 세밀한 강우-유출관계의 규명이 무엇보다 중요하다. 이를 위해서는 먼저 하천 유출지점의 정확한 유량정보가 획득되어야 하며, 장기간에 걸쳐 신뢰성 있는 유량자료의 확보는 더욱 중요한 사항이다. 본 연구에서는 하천에서 관측된 유량자료를 장기간(1983년${\sim}$2004년)에 걸친 유출성분으로 분리하는 기법을 활용하여 제어지점의 유출량을 검증하였다. 유량자료를 출구지점의 관측유량$(Q_{ob})$을 회귀수$({\alpha}Q_e)$, 상류유입량$(Q_{up})$ 및 관측강우-유출량$({\beta}Q_{Rain})$의 성분으로 구분하여 산정하는 방식으로 유출량을 추정하였다. 여기서, 회귀수$({\alpha}Q_e)$란 유역 및 하도내 용수이용량의 회귀수, 상류유입량$(Q_{up})$은 상류 유출 제어지점의 관측유량으로 대청댐 방류량, 관측강우-유출량$({\beta}Q_{Rain})$은 유역내 강우에 의한 자연유출량이다. 여기서 사용된 수문기초자료는 대청댐 방류량, 대전 및 청주권 취수량, 강우에 의한 자연유출량, 공주관측유량 등으로 각 성분별로 생성된 일자료를 이용하여 공주지점의 월별, 분기별, 년도별 유출량을 산정하였다. 이 결과는 금강유역에 이미 구축되어있는 SSARR모형을 기반으로 한 RRFS(Rainfall Runoff Forecasting System, 유출예측 시스템)의 결과 및 관측치와 비교되었다. 계산결과 RRFS에 의한 유출량과 대청-공주구간의 유출성분분리에 의한 유출량은 관측값과 전반적으로 근사함을 확인하였으며, 검증지점의 정확한 유출율을 산정할 수 있다면, 관측자료의 연속성 및 신뢰도를 파악하는 척도를 제공할 수 있을 것으로 판단된다.측결과 있는 대상유역에 대한 적용이 요구된다.-Moment 방법에 의해 추정된 매개변수를 사용한 Power 분포를 적용하였으며 이들 분포의 적합도를 PPCC Test를 사용하여 평가해봄으로써 낙동강 유역에서의 저수시의 유출량 추정에 대한 Power 분포의 적용성을 판단해 보았다. 뿐만 아니라 이와 관련된 수문요소기술을 확보할 수 있을 것이다.역의 물순환 과정을 보다 명확히 규명하고자 노력하였다.으로 추정되었다.면으로의 월류량을 산정하고 유입된 지표유량에 대해서 배수시스템에서의 흐름해석을 수행하였다. 그리고, 침수해석을 위해서는 2차원 침수해석을 위한 DEM기반 침수해석모형을 개발하였고, 건물의 영향을 고려할 수 있도록 구성하였다. 본 연구결과 지표류 유출 해석의 물리적 특성을 잘 반영하며, 도시지역의 복잡한 배수시스템 해석모형과 지표범람 모형을 통합한 모형 개발로 인해 더욱 정교한 도시지역에서의 홍수 범람 해석을 실시할 수 있을 것으로 판단된다. 본 모형의 개발로 침수상황의 시간별 진행과정을 분석함으로써 도시홍수에 대한 침수위험 지점 파악 및 주민대피지도 구축 등에 활용될 수 있을 것으로 판단된다. 있을 것으로 판단되었다.4일간의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에 있어서 시장수익률을 평균적으로 초과할 수 있는 거래전략은 존재하므로 이러한 전략을 개발 및 활용할 수 있으며, 특히, 한국주식시장에 적합한 거래전략은 반전거래전략이고, 이 전략의 유용성은 투자자가 설정한 투자기간보다 더욱 긴

  • PDF

A Study to Develop Monthly Cover Management Factor Database for Monthly Soil Loss Estimation (월단위 토양유실가능추정치를 위한 지표피복인자의 산정 방안 연구)

  • Sung, Yun Soo;Jung, Yunghun;Lim, Kyoung Jae;Kim, Jonggun;Kim, Ki-Sung;Park, Seung Ki;Shin, Min Hwan;Kum, Dong Hyuk;Park, Youn Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.23-30
    • /
    • 2016
  • Soil loss is an accompanying phenomenon of hydrologic cycle in watersheds. Both rainfall drops and runoff lead to soil particle detachment, the detached soil particles are transported into streams by runoff. Here, a sediment-laden water problem can be issued if soil particles are severely detached and transported into stream in the watershed. There is a need to estimate or simulate soil erosion in watersheds so that an adequate plan to manage soil erosion can be established. Universal Soil Loss Equation (USLE), therefore, was developed and modified by many researchers for their watersheds, moreover the simple model, USLE, has been employed in many hydrologic models for soil erosion simulations. While the USLE has been applied even in South-Korea, the model is often regarded as being limited in applications for the watersheds in South-Korea since monthly conditions against soil erosion on soil surface are not capable to represent. Thus, the monthly USLE factors against soil erosion, soil erodibility and crop management factors, were established for four major watersheds, which are Daecheong-dam, Soyang-dam, Juam-dam, and Imha-dam watersheds. The monthly factors were established by recent fifteen years from 2000 to 2015. Five crops were selected for the monthly crop management factor establishments. Soil loss estimations with the modified factors were compared to conventional approach that is average annual estimations. The differences ranged from 9.3 % (Juam-dam watershed) to 28.1 % (Daecheong-dam watershed), since the conventional approaches were not capable of seasonally and regionally different conditions.

Connection of Hydrologic and Hydraulic Models for Flood Forecasting in a Large Urban Watershed (대규모 도시유역의 홍수예보를 위한 수리.수문 모형의 연계)

  • Yoon, Seong-Sim;Choi, Chul-Kwan;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.929-941
    • /
    • 2008
  • The objectives of this study are to propose a system for combined use of a hydrologic and a hydraulic model for urban flood forecast model and to evaluate the system on the $300km^2$ Jungrang urban watershed area, which is relatively large area as an urban watershed and consequently composed of very complex drainage pipes and streams with different land uses. In this study, SWMM for hydrologic model and HEC-RAS for hydraulic model are used and the study area is divided into 25 subbasins. The SWMM model is used for sewer drainage analysis within each subbasin, while HEC-RAS for unstready flow analysis in the channel streams. Also, this study develops a GUI system composed of mean areal precipitation input component, hydrologic runoff analysis component, stream channel routing component, and graphical representation of model output. The proposed system was calibrated for the model parameters and verified for the model applicability by using the observation data. The correlation coefficients between simulated and observed flows at the 2 important locations were ranged on 0.83-0.98, while the coefficients of model efficiency on 0.60-0.92 for the verification periods. This study also provided the possibilities of manhole overflows and channel bank inundation through the calculated water profile of longitudinal and channel sections, respectively. It can be concluded that the proposed system can be used as a surface runoff and channel routing models for urban flood forecast over the large watershed area.

Estimation of Stream Water Quality Changes Brought by a New Town Development (신도시 개발 후 도시하천의 장래수질 평가)

  • Park, Ji-Young;Lim, Hyun-Man;Yoon, Young-Han;Jung, Jin-Hong;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • Water pollution problems of urban rivers due to the urbanization and industrialization have been the subject of public attention. In particular, considering the fact that the characteristics of water cycle of each basin change dramatically through the development of new towns, a large number of concerns about future water quality have been raised. However, reasonable measures to predict future water quality quantitatively have not been presented by this moment. In this study, by the linkage of annual unit load generation based on long-term monitoring results of the ministry of environment (MOE) to a semi-distributed rainfall runoff model, SWMM (Storm Water Management Model), we proposed a new methodology to estimate future water quality macroscopically and testified it to verify its applicability for the estimation of future water quality of a small watershed at G new town. As a result of the estimation using Y-EMC (Yearly based Event Mean Concentration), future water quality were simulated as BOD 18.7, T-N 16.1 and T-P 0.85 mg/L respectively which could not achieve the grade III of domestic river life guidance and these criteria could be satisfied by the reduction of domestic wastewater discharge load by over 80%. The results of this study are shown to be utilized for one of basic tools to estimate and manage water quality of urban rivers in the course of new town developments.