• Title/Summary/Keyword: Stratified Mixture

Search Result 70, Processing Time 0.025 seconds

Effects of Intake and Exhaust Valve Timing on Combustion and Emission Characteristics of Lean-Burn Direct-Injection LPG Engine (직접분사식 희박연소 LPG엔진에서 흡배기 밸브시기가 연소 및 배기특성에 미치는 영향)

  • Park, Cheolwoong;Kim, Taeyoung;Cho, Seehyoen;Oh, Seungmook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • In order to meet the enforced emission regulations and reduce fuel consumption, various new technologies are employed in engines. The problem of NOx emissions under a lean mixture condition should be solved, because a lean-burn direct-injection engine can realize stable lean combustion with a stratified mixture, which results in improvements in fuel economy and emissions. This study investigated the effects of intake and exhaust valve timing changes on the performance and emission characteristics of a lean-burn LPG direct-injection engine. Under a partial-load operating condition without throttling, an increase in the intake valve opening led to an increase in NOx emissions due to an increase in the amount of excess air. The fuel consumption deteriorated with an increase in the exhaust valve opening due to a decrease in the expansion work and an increase in the pumping loss.

Study on the Characteristics of Performance and Exhaust Emissions of 3-Chamber GDI Engine (3-연소실형 GDI Engine의 성능 및 배기 배출물 특성에 관한 연구)

  • 김봉수;정남훈;진선호;배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.37-47
    • /
    • 2002
  • Recently gasoline direct injection method has been applied to gasoline engine to reduce fuel consumption rate by controlling fuel air mixture on lean condition by means of stratified charging, and to reduce simultaneously. Pollutant emissions especially NOx and CO by lowering the combustion temperature. But difficulty of controling local fuel air ratio at ignition area in flammability limit unavoidably appeared, because it is merely controlled by injection timing with spatial and temporal distribution of fuel mixture. In this study, the authors devised a uniquely shaped combustion chamber so called three-chamber GDI engine, intended to keep the more reliable fuel air ratio at ignition area. The combustion chamber is divided into three regions. The first region is in the rich combustion division, where the fuel is injected from the fuel injection valve and ignited by the spark plug. The second region is in the lean combustion division, where the combustion gas from the rich combustion division flows out and burns on lean condition. And the last region is in the main combustion division ie in the cylinder, where the gas from the above two combustion divisions mixed together and completes the combustion during expansion stroke. They found that the stable range of operation of three-chamber GDI engine on low-load condition exists in the lean area of average equivalence ratio. And they also found that the reformed engine reveals less specific fuel consumption and less pollutant emissions compared with conventional carburettor type gasoline engine.

Comparison of Combustion Characteristics with Combustion Strategy and Excess Air Ratio Change in a Lean-burn LPG Direct Injection Engine (직접분사식 LPG 엔진의 연소전략 및 공기과잉률 변화에 따른 연소특성 비교)

  • Cho, Seehyeon;Park, Cheolwoong;Oh, Seungmook;Yoon, Junkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.96-103
    • /
    • 2014
  • Liquefied Petroleum Gas(LPG) has attracted attention as a alternative fuel. The lean-burn LPG direct injection engine is a promising technology because it has an advantage of lower harmful emissions. This study aims to investigate the effect of combustion strategy and excess air ratio on combustion and emission characteristics in lean-burn LPG direct injection engine. Fuel consumption and combustion stability were measured with change of the ignition timing and injection timing at various air/fuel ratio conditions. The lean combustion characteristics were evaluated as a function of the excess air ratio with the single injection and multiple injection strategy. Furthermore, the feasibility of lean operation with stratified mixture was assessed when comparing the combustion and emission characteristics with premixed lean combustion.

An Investigation of the Spray Characteristics according to Injection Conditions for a Gasoline Direct Injector (직분식 가솔린 인젝터의 분사 조건에 따른 분무 특성 분석)

  • 이기형;이창식;이창희;류재덕;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.89-95
    • /
    • 2001
  • Recently GDI(Gasoline Direct Injection) engine is spotlighted to achieve higher thermal efficiency under partial loads and better performance at full loads. To realize this system, it is essential to make both stratified combustion and homogeneous combustion. When compared to PFI(Port Fuel Injection) engine, GDI engine needs more complicated control and optimal design with injection system. In addition, spray pattern must be optimized according to injection timing because ambient pressure in combustion chamber is also varied. Thus spray structure should be analyzed in details to meet various conditions. In this experimental study, two types of visualization system were developed to simulate compression stroke and intake stroke, respectively. With an increase of the ambient pressure, the penetration length tends to decrease due to rising resistance caused by the drag force of the ambient air. Spray characteristics impinged on the piston has a significant effect on mixture stratification around the spark plug. These results provide the information on macroscopic spray structure and design factors far developing GDI injector.

  • PDF

An Experimental Study on the Flow Characteristics and the Stratification Effects in Visualization Engine Using the DPIV and the Entropy Analysis (DPIV와 엔트로피 해석방법을 이용한 가시화 엔진내의 유동 특성 및 성층효과에 관한 실험적 연구)

  • Lee Changhee;Lee Kihyung;Lee Changsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2005
  • The objective of this study is to analyse the spray characteristics according to the injection duration under the ambient pressure condition, and the injection timing in the visualization engine. In order to investigate the spray behavior, we obtained the spray velocity using the PIV method that has been an useful optical diagnostics technology, and calculated the vorticity from spray velocity component. These results elucidated the relationship between vorticity and entropy which play an important role in the diffusion process for the early injection case and the stratification process for the late injection case. In addition, we quantified the homogeneous diffusion rate of spray using the entropy analysis based on the Boltzmann's statistical thermodynamics. Using these method, it was found that the concentration of spray droplets caused by the increase of injection duration is more effective than the increase of momentum dissipation. We also found that the homogeneous diffusion rate increased as the injection timing moved to the early intake stroke process and BTDC $50^{\circ}$ was the most efficient injection timing for the stratified mixture formation during the compression stroke.

A Study on the Ultra Lean Combustion Characteristics of the BMW N53 GDI Engine (BMW N53 직접분사식 가솔린 엔진의 초희박 연소특성에 관한 연구)

  • Kim, Hong-Suk;Oh, Jin-Woo;Kim, Sung-Dea;Park, Chul-Wong;Lee, Seok-Whan;Jeong, Young-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.82-89
    • /
    • 2011
  • Ultra lean combustion with stratified air-fuel mixture is one of the methods that can improve fuel economy of gasoline engines. The aim of this study is to show that how much fuel economy is improved and what are differences in engine control of the ultra lean combustion compared with stoichiometric combustion. In this study, the BMW N53 GDI engine, which is one of ultra lean combustion GDI engines introduced in the market recently, was tested at various engine operating conditions. Results indicated that fuel consumption rates were improved by 11.9~25.8% by the ultra lean combustion compared with stoichiometric combustion. It was also found that multiple fuel injection, multiple spark, early intake valve opening, and large vlave overlap duration were the features of the ultra lean combustion for combustion stability and emission improvement.

Effects of Port Masking on Emission (포트 마스킹이 엔진의 배기에 미치는 영향)

  • Kim, Hyeong-Sig;Park, Chan-Jun;Ohm, In-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.23-28
    • /
    • 2011
  • To secure basic data for intake port design, effects of a port masking on the part load performance were investigated in a 4 valve SI engine. For this purpose, 9 kinds of masking, which have different shapes and masking ratio, are applied to the engine intake system. The characteristics of the performance were estimated through mixture response test at various engine load and speed. The results show that NOx emission, one of indexes for stratification, increases considerably in spite of retarded spark timing due to the stratification which is caused by unequal flow distribution between the two intake ports. The mechanism of stratification by masking is different from axial stratification and the fuel entering through masked port plays a very important role in this stratification process. In conclusion, the port masking method could be easily applied to engine intake system and be very effective for inducing the stratified charging without the change of port design.

An experimental study on solidification of binary mix-ture (이원용액의 응고현상에 관한 실험적 연구)

  • Cho, Han-Sung;Choi, Hie-Tak;Yoo, Jai-Suk
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.107-115
    • /
    • 1992
  • An experiment was performed to study solidification of binary mixture with double-diffusive convection in the liquid. A rectangular enclosure was filled with ammonium chloridewater solution. The phase change and convection process were studied through shadowgraph. Becasuse of the double-diffusive convection, the temperature field and concentration filed were stratified very rapidly. Correlation between solidified mass fraction and the dimensionless numbers was found; solidified mass concentration can be expressed as a linear function of $(Ste{\cdot}Ra^{1/4})^{2-Ste}{\cdot}Fo^{1/2}$.

  • PDF

Mixing and Combustion Characteristics of a CNG and Air according to Fuel Supply Conditions in a DI Engine (직분식 엔진에서 연료공급 조건에 따른 CNG와 공기의 혼합 및 연소특성)

  • Kang, Jeong-Ho;Park, Jong-Sang;Yeom, Jeong-Kuk;Chung, Sung-Sik;Ha, Jong-Yul
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • It was investigated how fuel injection timing - early injection and later injection - in conjunction with throttle open rate effect the fuel-air mixing characteristics, Engine power, combustion stability and emission characteristics on a DI CNG spark Engine and control system that had been modified and designed according to the author's original idea. It was verified that the combustion characteristics were changed according to fuel injection timings and Engine conditions determined by different throttle open rates and rpm. It was found that the combustion characteristics greatly improved at the complete open throttle rate with an early injection timing and at the part throttle rate with a late injection timing. Combustion duration was governed by flame propagation duration in a late injection timing and by an early flame development duration in an early injection timing. As the result, we discovered that combustion duration is shortened, lean limit is improved, air-fuel mixing conditions controlled, and emissions reduced through control of fuel injection timing according to change of the throttle open rate.

  • PDF

Potential of Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines (HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 연구)

  • Lim, Ock-Taeck
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.6
    • /
    • pp.7-14
    • /
    • 2010
  • This study investigated the effect on reducing the pressure rise rate(PRR) in HCCI Engine by the variation of mixing ratio in the pre-mixture of DME and n-Butane that has different auto-ignition characteristics. In addition to measure of gas pressure in the engine cylinder, chemiluminescence image using the optical accessible engine and numerical analysis with multi-zones model were used to assess the combustion at each local area in the combustion chamber. The maximum PRR changes depending on mixing condition of DME and n-Butane. When DME is stratified and n-Butane is distributed uniformly, maximum PRR becomes lowest which is about 0.25MPa/ms and it corresponds to 5deg. retarding of CA50.