• Title/Summary/Keyword: Stratification of Time

Search Result 206, Processing Time 0.028 seconds

Fuel Stratification Process in a Lean Burn Internal Combustion Engine by Using Planar Laser Induced Fluorescence (PLIF를 이용한 희박연소엔진에서의 연료 성층화에 관한 연구)

  • 정경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2003
  • Mixture formation in the cylinder of a lean bum engine has been observed by Laser Induced Fluorescence technique. XeCl laser (308nm) was used to produce a laser sheet. 3-pentanone has been added to iso-octane fuel to produce fluorescence, the intensity of which is proportional to the concentration of the fuel. The laser sheet was introduced through the piston window and the fuel distribution in the vertical plane was observed through a side window. Comparison has been made for the cases of selected fuel injection timing as 0, 360, 405, and 450 CA. For the case of 0 and 360 CA injection, uniform fuel distribution in the combustion chamber has been obtained at the ignition time which is favorable for the high load mode. And the late injection cases, 405 and 450 CA, revealed the stratified formation of rich mixture around the spark plug. That extends the lean misfire limit and reduces cyclic variation in the low load mode.

Prediction of Stratified Turbulent Channel Flows with an Second Moment Model Using the Elliptic Equations (타원 방정식을 사용하는 2차모멘트 모형에 의한 성층된 난류 평판유동의 예측)

  • Shin, Jong-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.831-841
    • /
    • 2007
  • This work is to extend the elliptic operator, which has been already adopted in turbulent stress model, to fully developed turbulent buoyant channel flows with changing the orientation of the buoyancy vector to be perpendicular to the channel walls. The turbulent heat flux models based on the elliptic concept are employed and closely linked to the elliptic blending second moment closure which is used for the prediction of Reynolds stresses. In order to reflect the stable or unstable stratification conditions, the present model introduces the gradient Richardson number into the thermal to mechanical time scale ratio and model coefficients. The present model has been applied for the computation of stably and unstably stratified turbulent channel flows and the prediction results are directly compared to the DNS data.

A Real-time Monitoring and Modeling of Turbidity Flow into a Reservoir (실시간 저수지 탁수 감시 및 예측 모의)

  • Chung, Se-Woong;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1184-1188
    • /
    • 2005
  • The impacts of turbidity flow induced by summer rainfall events on water supply, aquatic ecosystems, and socioeconomics are significant and major concerns in most of reservoirs operations. As a decision support tool, the real-time turbidity flow monitoring and modeling system RTMMS is under development using a laterally integrated two-dimensional (2D) hydrodynamic and water quality model. The objectives of this paper is to present the preliminary field observation results on the characteristics of rainfall-induced turbidity flows and their density flow regimes, and the model performance in replicating the fate and transport of turbidity plume in a reservoir. The rainfall-induced turbidity flows caused significant drop of river water temperature by 5 to $10^{\circ}C$ and resulted in density differences of 1.2 to $2.6kg/m^3$ between inflow water and ambient reservoir water, which consequently led development of density flows such as plunge flow and interflow in the reservoir. The 2D model was set up for the reservoir. and applied to simulate the temperature stratification, density flow regimes, and temporal and spatial turbidity distributions during flood season of 2004 After intensive refinements on grid resolutions , the model showed efficient and satisfactory performance in simulating the observed reservoir thermal stratification and turbidity profiles that all are essentially required to enhance the performance of RTMMS.

  • PDF

Analytical Solutions to a One-Dimensional Model for Stratified Thermal Storage Tanks (성층화된 축열조의 1차원모델에 대한 해석적인 해)

  • Yoo, H.;Pak, E.-T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.42-51
    • /
    • 1995
  • In order to establish a theoretical basis for the analyses of transient behaviors in stratified thermal storage tanks, analytical approaches to an improved one-dimensional model are made. In the present model the storage tank is treated as a finite region with an adiabatic tank exit, whereas it has been considered as a simple semi-infinite region previously. Application of the Laplace transformation and the Inversion theorem to the governing equations makes it possible to obtain an exact infinite-series solution, which is convergent only at sufficiently large time. Accordingly a complementary solution which is available for short times, i.e., the time range of this study is sought by an approximate method. The approximate solution which is rigorously validated through the examination of neglected terms in the solution procedure agrees quite well with the exact one. Moreover, it is simpler to use and more convenient to interpret the physical meaning of the solution. Comparison of the present solution with the previous ones shows relatively large difference near the tank bottom, which results from the more realistic boundary condition adopted in the present model. Some representative results by the approximate solution including effects of the Peclet number on temperature distrbutions are illustrated to show the utility of this study. In consequence, it is expected that the present results based on the improved model replace the foregoing ones as a new theoretical reference for studies of thermal stratification fields.

  • PDF

Clinical Implementation of Precision Medicine in Gastric Cancer

  • Jeon, Jaewook;Cheong, Jae-Ho
    • Journal of Gastric Cancer
    • /
    • v.19 no.3
    • /
    • pp.235-253
    • /
    • 2019
  • Gastric cancer (GC) is one of the deadliest malignancies in the world. Currently, clinical treatment decisions are mostly made based on the extent of the tumor and its anatomy, such as tumor-node-metastasis staging. Recent advances in genome-wide molecular technology have enabled delineation of the molecular characteristics of GC. Based on this, efforts have been made to classify GC into molecular subtypes with distinct prognosis and therapeutic response. Simplified algorithms based on protein and RNA expressions have been proposed to reproduce the GC classification in the clinical field. Furthermore, a recent study established a single patient classifier (SPC) predicting the prognosis and chemotherapy response of resectable GC patients based on a 4-gene real-time polymerase chain reaction assay. GC patient stratification according to SPC will enable personalized therapeutic strategies in adjuvant settings. At the same time, patient-derived xenografts and patient-derived organoids are now emerging as novel preclinical models for the treatment of GC. These models recapitulate the complex features of the primary tumor, which is expected to facilitate both drug development and clinical therapeutic decision making. An integrated approach applying molecular patient stratification and patient-derived models in the clinical realm is considered a turning point in precision medicine in GC.

Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow(III) - Turbulent Dispersion from a Line Heat Source- (열성층유동장에 놓인 원주후류의 특성에 대한 연구 (3) -선형열원으로부터의 난류확산-)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1300-1307
    • /
    • 1995
  • The effect of thermal stratification on the turbulent dispersion from a fine cylindrical heat source was experimentally examined in a wind tunnel with and without a strong temperature gradient. A 0.5 mm dia. nichrome wire was used as a line heat source. Turbulent intensities, r.m.s. value of temperature and convective heat fluxes were measured by using a hot-wire and cold-wire combination probe. The results show that the peack value and the spread of the vertical turbulent intensity for the stratified case are far lower than those in the neutral case, which indicates that the stable temperature gradient suppresses the vertical velocity component. All of the third order moments including heat fluxes measured in the stable condition have very small values than those of the neutral case. This nature suggests that the decrease of scalar fluctuations in the stably stratified flow is mainly due to the suppression ofthe turbulent diffusion processes by the stable stratification. A simple gradient model with a composite timescale which has a simple weighted algebraic mean between dynamic and thermal time scale yields reasonably good numerical values in comparison with the experimental data.

Imaging-Based Versus Pathologic Survival Stratifications of Diffuse Glioma According to the 2021 WHO Classification System

  • So Jeong Lee;Ji Eun Park;Seo Young Park;Young-Hoon Kim;Chang Ki Hong;Jeong Hoon Kim;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.772-783
    • /
    • 2023
  • Objective: Imaging-based survival stratification of patients with gliomas is important for their management, and the 2021 WHO classification system must be clinically tested. The aim of this study was to compare integrative imaging- and pathology-based methods for survival stratification of patients with diffuse glioma. Materials and Methods: This study included diffuse glioma cases from The Cancer Genome Atlas (training set: 141 patients) and Asan Medical Center (validation set: 131 patients). Two neuroradiologists analyzed presurgical CT and MRI to assign gliomas to five imaging-based risk subgroups (1 to 5) according to well-known imaging phenotypes (e.g., T2/FLAIR mismatch) and recategorized them into three imaging-based risk groups, according to the 2021 WHO classification: group 1 (corresponding to risk subgroup 1, indicating oligodendroglioma, isocitrate dehydrogenase [IDH]-mutant, and 1p19q-codeleted), group 2 (risk subgroups 2 and 3, indicating astrocytoma, IDH-mutant), and group 3 (risk subgroups 4 and 5, indicating glioblastoma, IDHwt). The progression-free survival (PFS) and overall survival (OS) were estimated for each imaging risk group, subgroup, and pathological diagnosis. Time-dependent area-under-the receiver operating characteristic analysis (AUC) was used to compare the performance between imaging-based and pathology-based survival model. Results: Both OS and PFS were stratified according to the five imaging-based risk subgroups (P < 0.001) and three imaging-based risk groups (P < 0.001). The three imaging-based groups showed high performance in predicting PFS at one-year (AUC, 0.787) and five-years (AUC, 0.823), which was similar to that of the pathology-based prediction of PFS (AUC of 0.785 and 0.837). Combined with clinical predictors, the performance of the imaging-based survival model for 1- and 3-year PFS (AUC 0.813 and 0.921) was similar to that of the pathology-based survival model (AUC 0.839 and 0.889). Conclusion: Imaging-based survival stratification according to the 2021 WHO classification demonstrated a performance similar to that of pathology-based survival stratification, especially in predicting PFS.

Effect of Wet Cold and Gibberellin Treatments on Germination of Dwarf Stone Pine Seeds (저온습윤 및 지베렐린 처리가 눈잣나무의 종자발아에 미치는 영향)

  • Lim, Hyo-In;Kim, Gil-Nam;Jang, Kyung-Hwan;Park, Wan-Geun
    • Korean Journal of Plant Resources
    • /
    • v.28 no.2
    • /
    • pp.253-258
    • /
    • 2015
  • In South Korea, Pinus pumila (Pall.) Regel (dwarf stone pine) has been designated as a critically endangered species by the Korea Forest Service. We have difficulties in obtaining the seeds of P. pumila because P. pumila grows only in the Daecheongbong area (1550–1700 m above sea level) of Mt. Seorak and almost all of its cones are damaged by birds and rodents. For establishing an ex situ conservation stand of P. pumila, this study was conducted to figure out the effects of wet cold (cold stratification, prechilling) and GA3 treatment on the germination of P. pumila seeds. After cold stratification (1, 2, 3, 4, 5 months), prechilling (1, 2, 3, 4, 5 months) and GA3 treatment (0, 100, 500, 1,000, 2,000, 3,000 ㎎/L), seeds were placed on petri-dishes at 25℃ under light condition. The percentage of germination, mean germination time and the germination rate were investigated. The results showed that both of the cold stratification and prechilling were effective in improving germination performances. However, there were no significant differences in performances between the two cold treatments. Within each treatment, the germination performances improved with the period of treatment. However, after three months of treatment, the performances showed no significant improvement. The gibberellin treatment was also effective in improving seed germination of P. pumila. The percentage of germination reached 79.0% in the seeds treated with 100 ㎎/L of GA3. However, the germination performances decreased at high concentration of GA3 treatments (over 2000 ㎎/L). In conclusion, cold stratification (over 3 months) or 100 ㎎/L of GA3 treatment was considered to be the appropriate method for seedling production of P. pumila.

Variation of Physical Environment near the Artificial Upwelling Structure during the Summer (하계 인공용승구조물 주변해역의 물리환경변화)

  • Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.4
    • /
    • pp.372-380
    • /
    • 2015
  • In order to study the characteristics of physical environment in water column around the artificial upwelling structure, CTD and currents measurements were carried out along line observations. Before installation of artificial upwelling structure was installed, the stratification of water column existed 30m in water depth. After installation of artificial upwelling structure, however, stratification formation depth and strength changed depending on currents directions. It seems that the change of stratification has a close relation with upwelling of lower temperature water. After installing the artificial upwelling structure, the distributions of vertical flows were analyzed. Local upwelling and downwelling flows showed a distinct time and spacial changes. Local upwelling flows caused by artificial upwelling structure appeared 100 times larger than coastal upwelling in the South-East Sea of Korea. Upwelling flows generated by the artificial structure raised the high concentration of nutrients to upper layer from lower layer breaking stratification in the summer. Thus, upwelling structure plays an important role for vertical water circulation improving the food environments by increasing primary production.

An experimental study on thermal storage characteristics in the thermally stratified water storage system (성층 축열 시스템에서의 열 저장 특성에 관한 실험적 연구)

  • Koh, J.Y.;Kim, Y.K.;Lee, C.M.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.37-46
    • /
    • 2001
  • This study describes the experimental study that focuses on the effects that distributor shapes and flow rate variations have an influence on the stratification in a rectangular thermal storage tank. Experiments were carried out under the conditions that the flow rates of working fluid are 20, 10 and $5\ell$/min. The storage tank is initially filled with chilled water of $1^{\circ}C$, and is extracted through the bottom at the same rate as the return warm water from load is entered through the distributor at the top of the tank. The thermo-cline forms at the top of the storage tank as the warm water enters the tank from the load through the distributor and the thermo-cline thickness increases with time. Emphasis is given to the effects of mixing at the inlet that increases the thermo-cline decay Flow rate variation and inlet distributor shapes are the important parameters in deciding the performance of a storage system. Stratification degree increases with decreasing in inlet flow rate under $10\ell$/min. Experiments shows that better thermal stratification can be obtain using the distributor to limit momentum mixing at the inlets and outlets. Also, 12% of improvement in the thermal energy usage has been achieved using the modified distributor discharging same flow rate in each lateral ports.

  • PDF