• Title/Summary/Keyword: Stratification of Time

Search Result 211, Processing Time 0.024 seconds

A Feasibility Study on Biogas Production from Anaerobic Digestion of Straw (볏짚의 혐기성소화시 소화가스 생성에 관한 연구)

  • Park, Jong-An;Hur, Joon-Moo
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.29-35
    • /
    • 1999
  • Quantity and composition of biogas from semi-continuous anaerobic digestion of straw were obtained experimentally in laboratory scale digesters fed with 1 liter of 5% straw-water mixture and maintained at 35$^{\circ}C$. Experiments were carried out for hydraulic retention time(HRT) of 8, 10 and 15days, respectively. The amount and composition of biogas produced were measured until steady-state was achieved for each run. The amount of biogas and methane percent go through a maximum and decrease continuously towards the steady-state after three times operation of hydraulic retention time(HRT). Methane gas production rates at steady-state increase with the increasing of HRT. Biogas production of 0.45 liter/day with 25% methane, 0.42 liter/day with 33.7% methane and 0.492 liter/day with 31.7% methane were obtained for 8, 10 and 15days of HRT, respectively. The high proportion of soluble carbohydrates present in straw makes the volatile fatty acids to build up within the digester causing a drop in pH that inhibits digestion. Regular control of pH is therefore necessary by adding alkalinity. Reductions in COD increase with increase in HRT. The stratification of plant material within the digester is different from that of manure, and modifications in design and operation of digesters may be necessary if they are fed with plant matter.

  • PDF

Preclinical study of a novel ingestible bleeding sensor for upper gastrointestinal bleeding

  • Kimberly F. Schuster;Christopher C. Thompson;Marvin Ryou
    • Clinical Endoscopy
    • /
    • v.57 no.1
    • /
    • pp.73-81
    • /
    • 2024
  • Background/Aims: Upper gastrointestinal bleeding (UGIB) is a life-threatening condition that necessitates early identification and intervention and is associated with substantial morbidity, mortality, and socioeconomic burden. However, several diagnostic challenges remain regarding risk stratification and the optimal timing of endoscopy. The PillSense System is a noninvasive device developed to detect blood in patients with UGIB in real time. This study aimed to assess the safety and performance characteristics of PillSense using a simulated bleeding model. Methods: A preclinical study was performed using an in vivo porcine model (14 animals). Fourteen PillSense capsules were endoscopically placed in the stomach and blood was injected into the stomach to simulate bleeding. The safety and sensitivity of blood detection and pill excretion were also investigated. Results: All the sensors successfully detected the presence or absence of blood. The minimum threshold was 9% blood concentration, with additional detection of increasing concentrations of up to 22.5% blood. All the sensors passed naturally through the gastrointestinal tract. Conclusions: This study demonstrated the ability of the PillSense System sensor to detect UGIB across a wide range of blood concentrations. This ingestible device detects UGIB in real time and has the potential to be an effective tool to supplement the current standard of care. These favorable results will be further investigated in future clinical studies.

Medulloblastoma in the Molecular Era

  • Kuzan-Fischer, Claudia Miranda;Juraschka, Kyle;Taylor, Michael D.
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.292-301
    • /
    • 2018
  • Medulloblastoma is the most common malignant brain tumor of childhood and remains a major cause of cancer related mortality in children. Significant scientific advancements have transformed the understanding of medulloblastoma, leading to the recognition of four distinct clinical and molecular subgroups, namely wingless (WNT), sonic hedgehog, group 3, and group 4. Subgroup classification combined with the recognition of subgroup specific molecular alterations has also led to major changes in risk stratification of medulloblastoma patients and these changes have begun to alter clinical trial design, in which the newly recognized subgroups are being incorporated as individualized treatment arms. Despite these recent advancements, identification of effective targeted therapies remains a challenge for several reasons. First, significant molecular heterogeneity exists within the four subgroups, meaning this classification system alone may not be sufficient to predict response to a particular therapy. Second, the majority of novel agents are currently tested at the time of recurrence, after which significant selective pressures have been exerted by radiation and chemotherapy. Recent studies demonstrate selection of tumor sub-clones that exhibit genetic divergence from the primary tumor, exist within metastatic and recurrent tumor populations. Therefore, tumor resampling at the time of recurrence may become necessary to accurately select patients for personalized therapy.

An Experimental Study on the Characteristics of Combustion and Emission in a Gasoline Direct Injection Type HCCI Engine by Controlling Mixture Formation (가솔린 직접분사식 HCCI 엔진의 혼합기 제어에 의한 연소 및 배기 특성에 관한 실험적 연구)

  • 김형민;류재덕;이기형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.24-30
    • /
    • 2004
  • As the environmental pollution becomes serious global problem, the regulation of emission exhausted from automobiles is strengthened. Therefore, it is very important to know how to reduce the NOx and PM simultaneously in diesel engines, which has lot of merits such as high thermal efficiency, low fuel consumption and durability. By this reason, the new concept called as Homogeneous Charge Compression Ignition(HCCI) engines are spotlighted because this concept reduced NOx and P.M. simultaneously. However, there is trade off between output and NOx in a HCCI engine. In this study, output and emission characteristics for a gasoline direct injection type HCCI engine were investigated to clarify the effects of intake air temperature, injection time and mixture formation. From these experiments, we found that the smoke was not produced when the fuel was injected earlier than BTDC 90$^{\circ}$. In addition, the output was increased because of delay of ignition time and NOx emission was decreased because of homogeneous charge of first injection in case of split injection.

Simulations of the Effect of Flow Control and Phosphate Loading on the Reduction of Algae Biomass in Gangjeong-Goryong Weir (유량 조절과 인 부하 변동에 따른 강정고령보 조류저감 효과 수치 모의)

  • Park, Dae-Yeon;Kim, Sung-Jin;Park, Hyung-Seok;Chung, Se-Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.507-524
    • /
    • 2019
  • The purpose of this study was to validate the EFDC model for the weir pool of Gangjeong-Goryong Weir located in Nakdong River, and evaluate the effect of flow control and phosphate loading reduction on the water quality and algae biomass by group (Diatom, Green, Cyanobacteria). As a result of model validation using 2018 experimental data,the time series of water level and vertical distribution of water temperature, DO, organic matter, nitrogen, and phosphorus time series were properly simulated. Seasonal fluctuations of algae biomass by group were adequately reproduced, but the deviations between measured and simulated values were significant in some periods. As a result of scenario simulations to control the water level and flow rate, the thermal stratification was resolved as the water level was lowered and the flow rate increased. The flow velocity at which the water temperature stratification was resolved was about 0.1 m/s, which is consistent with the previous study results of Baekje Weir in Geum River. Simulations of the 2Q flow scenario showed that Chl-a decreased by 8.7% and the cell density of diatom and green algae declined. The cell density of cyanobacteria increased, however, because the high concentrations of cyanobacteria in the upstream boundary conditions directly affected downstream due to increased flow velocity. In the scenario simulation of reducing the influent phosphate load concentration (average 0.056 mg/L) to 50%, Chl-a decreased by 13.6%.The results suggest that the upstream algae concentration and phosphorus load reduction should be considered simultaneously with hydraulic control to prevent algal overgrowth of Gangjeong-Goryong Weir.

Can Robotic Gastrectomy Surpass Laparoscopic Gastrectomy by Acquiring Long-Term Experience? A Propensity Score Analysis of a 7-Year Experience at a Single Institution

  • Hong, Sung-Soo;Son, Sang-Yong;Shin, Ho-Jung;Cui, Long-Hai;Hur, Hoon;Han, Sang-Uk
    • Journal of Gastric Cancer
    • /
    • v.16 no.4
    • /
    • pp.240-246
    • /
    • 2016
  • Purpose: It is hypothesized that robotic gastrectomy may surpass laparoscopic gastrectomy after the operators acquire long-term experience and skills in the manipulation of robotic arms. This study aimed to evaluate the long-term learning curve of robotic distal gastrectomy (RDG) for gastric cancer compared with laparoscopic distal gastrectomy (LDG). Materials and Methods: From October 2008 to December 2015, patients who underwent LDG (n=809) were matched to patients who underwent RDG (n=232) at a 1:1 ratio, by using a propensity score matching method after stratification for the operative year. The surgical outcomes, such as trends of operative time, blood loss, and complication rate, were compared between the two groups. Results: The RDG group showed a longer operative time (171.3 minutes vs. 147.6 minutes, P<0.001) but less estimated blood loss (77.6 ml vs. 116.6 ml, P<0.001). The complication rate and postoperative recovery did not differ between the two groups. The RDG group showed a longer operative time and similar estimated blood loss compared with the LDG group after 5 years of experience (operative time: 159.2 minutes vs. 136.0 minutes in 2015, P=0.003; estimated blood loss: 72.9 ml vs. 78.1 ml in 2015, P=0.793). Conclusions: In terms of short-term surgical outcomes, RDG may not surpass LDG after a long-term experience with the technique.

A Study on Time Allocation in Transition to Old Age -Focusing on the Patterns of Time Allocation among People aged 45 or more- (생애과정 전환기의 생활시간 배분에 관한 연구 -중.고령자의 생활시간 비교를 중심으로-)

  • Park, Mihee;Byun, Geumsun
    • Korean Journal of Social Welfare
    • /
    • v.65 no.3
    • /
    • pp.29-52
    • /
    • 2013
  • This study examined how middle-aged and elderly persons allocated their time in overall perspective and whether the patterns were varied by age, socio-demographic factors, and the interaction effect between them. This study analyzed the 2009 Time Use Survey Data (17,096 time-diaries of people aged 45 or more) of the National Statistical Office using tobit regression model. The main results are as follows. First, middle-aged and elderly people gradually decreased paid work times. Second, the patterns of time allocation were varied by age, gender, education level, marital status and household type(Agricultural/non-agricultural). Third, there were interaction effects between age and the socio-demographic factors on paid work time and leisure time. Highly educated or urban persons were likely to have less time in paid work less than other groups with increasing age. And females were likely to have less time in domestic labor and care work than males with increasing age. But they had more time in social and economic productive activities than males. Based on these findings, this study suggests comprehensive approach to analyze the time use of elderly beyond economic working time or leisure time. To establish effective ageing society policy, it is necessary to consider the time allocation of elderly which divided into the social stratification.

  • PDF

A summertime near-ground velocity profile of the Bora wind

  • Lepri, Petra;Kozmar, Hrvoje;Vecenaj, Zeljko;Grisogono, Branko
    • Wind and Structures
    • /
    • v.19 no.5
    • /
    • pp.505-522
    • /
    • 2014
  • While effects of the atmospheric boundary layer flow on engineering infrastructure are more or less known, some local transient winds create difficulties for structures, traffic and human activities. Hence, further research is required to fully elucidate flow characteristics of some of those very unique local winds. In this study, important characteristics of observed vertical velocity profiles along the main wind direction for the gusty Bora wind blowing along the eastern Adriatic coast are presented. Commonly used empirical power-law and the logarithmic-law profiles are compared against unique 3-level high-frequency Bora measurements. The experimental data agree well with the power-law and logarithmic-law approximations. An interesting feature observed is a decrease in the power-law exponent and aerodynamic surface roughness length, and an increase in friction velocity with increasing Bora wind velocity. This indicates an urban-like velocity profile for smaller wind velocities and rural-like velocity profile for larger wind velocities, which is due to a stronger increase in absolute velocity at each of the heights observed as compared to the respective velocity gradient (difference in average velocity among two different heights). The trends observed are similar during both the day and night. The thermal stratification is near neutral due to a strong mechanical mixing. The differences in aerodynamic surface roughness length are negligible for different time averaging periods when using the median. For the friction velocity, the arithmetic mean proved to be independent of the time record length, while for the power-law exponent both the arithmetic mean and the median are not influenced by the time averaging period. Another issue is a large difference in aerodynamic surface roughness length when calculating using the arithmetic mean and the median. This indicates that the more robust median is a more suitable parameter to determine the aerodynamic surface roughness length than the arithmetic mean value. Variations in velocity profiles at the same site during different wind periods are interesting because, in the engineering community, it has been commonly accepted that the aerodynamic characteristics at a particular site remain the same during various wind regimes.

Comparison of pregnancy outcomes using a time-lapse monitoring system for embryo incubation versus a conventional incubator in in vitro fertilization: An age-stratification analysis

  • Chera-aree, Pattraporn;Thanaboonyawat, Isarin;Thokha, Benjawan;Laokirkkiat, Pitak
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.174-183
    • /
    • 2021
  • Objective: The aim of this study was to compare the pregnancy outcomes of in vitro fertilization with embryo transfer between embryos cultured in a time-lapse monitoring system (TLS) and those cultured in a conventional incubator (CI). Methods: The medical records of 250 fertilized embryos from 141 patients undergoing infertility treatment with assisted reproductive technology at a tertiary hospital from June 2018 to May 2020 were reviewed. The study population was divided into TLS and CI groups at a 1 to 1 ratio (125 embryos per group). The primary outcome was the live birth rate. Results: The TLS group had a significantly higher clinical pregnancy rate (46.4% vs. 27.2%, p=0.002), implantation rate (27.1% vs. 12.0%, p=0.004), and live birth rate (32.0% vs. 18.4%, p=0.013) than the CI group. Furthermore, subgroup analyses of the clinical pregnancy rate and live birth rate in the different age groups favored the TLS group. However, this difference only reached statistical significance in the live birth rate in women aged over 40 years and the clinical pregnancy rate in women aged 35-40 years (p=0.048 and p=0.031, respectively). The miscarriage rate, cleavage rate, and blastocyst rate were comparable. Conclusion: TLS application improved the live birth rate, implantation rate, and clinical pregnancy rate, particularly in the advanced age group in this study, while the other reproductive outcomes were comparable. Large randomized controlled trials are needed to further explore the ramifications of these findings, especially in different age groups.

Seasonal variability of cyclone heat potential and cyclonic responses in the Bay of Bengal characterized using moored observatories

  • Vengatesan, G.;Shanmugam, P.;Venkatesan, R.;Vedachalam, N.;Joseph, Jossia K.
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.181-199
    • /
    • 2020
  • Cyclone Heat Potential (CHP) is an essential parameter for accurate prediction of the intensity of tropical cyclones. The variability of the heat storage in the near-surface layers and the vertical stratification near the surface due to large fresh water inputs create challenges in predicting the intraseasonal and interannual evolution of monsoons and tropical cyclones in the Bay of Bengal. This paper for the first time presents the D26- referenced cyclone heat potential observed in the Bay of Bengal during the period 2012-17 based on the in-situ data collected from 5.5 million demanding offshore instrument-hours of operation in the Ocean Moored Buoy Network for Northern Indian Ocean (OMNI) buoy network by the National Institute of Ocean Technology. It is observed that the CHP in the Bay of Bengal varied from 0-220 kJ/㎠ during various seasons. From the moored buoy observations, a CHP of ~ 90 kJ/㎠ with the D26 isotherm of minimum 100m is favorable for the intensification of the post-monsoon tropical cyclones. The responses of the D26 thermal structure during major tropical cyclone events in the Bay of Bengal are also presented.