• Title/Summary/Keyword: Strands

Search Result 410, Processing Time 0.032 seconds

Analysis of the DC Resistance of the Butt Joint using the Random Contact Patterns of Strands

  • Lee, Ho-Jin;Lee, Sang-Il;Lee, Bong-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.17-21
    • /
    • 2004
  • The butt joint was verified to satisfy the thermal stability of the ITER magnet system through the ITER CS model coil test. Since the contact area in the butt joint is limited to the cross section of the cable, it is necessary to analyze and control the joining parameters precisely for improving the DC resistance. It is difficult to simulate the cables, which are composed of a lot of strands, as three-dimensional models using the commercial code. The random numbers were used to simulate many kinds of contact patterns of the strands on the bonding surface for calculating the bonding area and the DC resistance of the butt joint. The calculated DC resistance decreases with an increase of cable filling factor in terminal. The calculated DC resistance of a 0.9 cable filling factor is about 0.48 n-Ohm, which is about one-tenth of that in the CS model coil test when not considering the electrical contact resistance. From this difference, the electrical contact resistance between the strands and copper sheet was calculated.

Application of numerical simulation for the analysis and interpretation of pile-anchor system failure

  • Saleem, Masood
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.689-707
    • /
    • 2015
  • Progressive increase in population causing land scarcity, which is forcing construction industry to build multistory buildings having underground basements. Normally, basements are constructed for parking facility. This research work evaluates important factors which have caused the collapse of pile-anchor system at under construction five star hotel. 21 m deep excavation is carried out, to have five basements, after installation of 600 mm diameter cast in-situ contiguous concrete piles at plot periphery. To retain piles and backfill, soil anchors are installed as pit excavation is proceeded. Before collapse, anchors are designed by federal highway administration procedure and four anchor rows are installed with three strands per anchor in first row and four in remaining. However, after collapse, system is modeled and analyzed in plaxis using mohr-coulomb method. It is investigated that in-appropriate evaluation of soil properties, additional surcharge loads, lesser number of strands per anchor, shorter grouted body length and shorter pile embedment depth caused large deformations to occur which governed the collapse of east side pile wall. To resume work, old anchors are assumed to be standing at one factor of safety and then system is analyzed using finite element approach. Finally, it is concluded to use four strands per anchor in first new row and five strands in remaining three with increase in grouted and un-grouted body lengths.

Experimental study of a pretensioned connection for modular buildings

  • Yu, Yujie;Chen, Zhihua;Chen, Aoyi
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.217-232
    • /
    • 2019
  • Modular steel buildings consist of prefabricated room-sized structural units that are manufactured offsite and installed onsite. The inter-module connections must fulfill the assembly construction requirements and soundly transfer the external loads. This work proposes an innovative assembled connection suitable for modular buildings with concrete-filled steel tube columns. The connection uses pretensioned strands and plugin bars to vertically connect the adjacent modular columns. The moment-transferring performance of this inter-module connection was studied through monotonic and cyclic loading tests. The results showed that because of the assembly construction, the connected sections were separated under lateral bending, and the prestressed inter-module connection performed as a weak semirigid connection. The moment strength at the early loading stage originated primarily from the contact bonding mechanism with the infilled concrete, and the postyield strength depended mainly on the tensioned strands. The connection displayed a self-centering-like behavior that the induced deformation was reversed during unloading. The energy dissipation originated primarily from frictional slipping of the plugin bars and steel strands. The moment transferring ability was closely related to the section dimension and the arrangements of the plugin bars and steel strands. A simplified strength calculation and evaluation method was also proposed, and the effectiveness was validated with the test data.

Structural Performance on the Self-centering Connections with Different Conditions of PT Strands (긴장재 적용조건에 따른 셀프센터링 접합부의 구조성능에 관한 연구)

  • Jung, Mi Jin;Yoon, Sung Kee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • In this study, cyclic loading analysis was conducted in order to understand the behavior of self-centering connections based on the number of PT(posttensioning) strands and initial posttensioning force. The initial posttensioning force needs to be above the yield moment of an angle for obtaining noticeable self-centering effect and it is proper that decompression moment ratio needs to be below 0.35 to minimize the residual displacement of major elements. As the number of PT strands increased, self-centering capacity also improved since initial posttensiong force in each PT strand has been decreased. It is also appropriate that initial posttensiong force needs to be less than or equal to 75% of yield strength of PT strands.

Shear Behavior of Large Prestressed Concrete Beams Cast with High Strength Concrete and the Effect of Draped Tendon on their Shear Behavior (고강도 대형 프리스트레스트 콘크리트 보의 전단거동과 경사진 프리스트레싱 긴장재의 영향)

  • Kim Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.963-974
    • /
    • 2005
  • This paper presented four shear test results from experimental tests of two large prestressed concrete beams cast with high strength concrete. In particular, this experiment investigated the effects of draped strands on shear behavior of these full-scaled beams. This study indicated that the use of draped strands increased the ultimate shear capacity as well as the web-shear cracking load. The test results also showed that draped strands reduced strand slip at ends of beams, which represented that these strands were effective to relieve the anchorage stresses. The test results were compared to predictions by two major codes; ACI 318-02 Building Code and AASHTO LRFD(2002). The shear design provisions in these codes provided conservative results on the shear strengths of all test specimens with reasonable margins of safety, and these provisions were particularly more conservative for test specimens having draped strands.

Reversed Cyclic Loading Test of Post-Tensioned Precast Concrete Beam-Column Connections with 2400MPa Prestressing Strands (2400MPa 긴장재가 적용된 포스트텐션 프리캐스트 콘크리트 보-기둥 접합부의 반복가력실험)

  • Hwang, Jin-Ha;Choi, Seung-Ho;Lee, Deuck Hang;Kim, Kang Su;Woo, Woon Tack
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.45-52
    • /
    • 2017
  • The precast concrete (PC) method has many advantages in fast construction, quality control, etc. In domestic construction market, however, its application has been quite limited because of the concerns about structural integrity and seismic performances due to the discrete connections between precast concrete members. By applying the post-tensioning method, the precast beam-column connection can be well tightened, allowing improved structural integrity, and proper seismic performances can be also achieved. In this study, reversed cyclic tests have been conducted on the beam-column connection specimens, where the test variables included the compressive strength of grouting mortar and the tensile strengths of prestressing strands, based on which their seismic performances have been examined in detail. The post-tensioned PC beam-column connections showed good seismic performances comparable to that of the monolithic reinforced concrete connection specimen. When 2400 MPa prestressing strands are applied to the beam-column connection, it is preferable to adjust the prestress level similar to that applied for the 1860 MPa prestressing strands to avoid premature local crushing failures at the beam-column connections.

Effect of Alkali-Washing at Different Concentration on the Chemical Compositions of the Steam Treated Bamboo Strands

  • MAULANA, Muhammad Iqbal;MURDA, Rio Ardiansyah;PURUSATAMA, Byantara Darsan;SARI, Rita Kartika;NAWAWI, Deded Sarip;NIKMATIN, Siti;HIDAYAT, Wahyu;LEE, Seung Hwan;FEBRIANTO, Fauzi;KIM, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.14-22
    • /
    • 2021
  • The objective of this study was to investigate the effect of alkali-washing with different sodium hydroxide concentrations on the chemical compositions of steam-treated Betung bamboo strand. Strands were subjected to steam treatment at 126 ℃ for 1 h under 0.14 MPa pressure and followed by washing with 1-5% sodium hydroxide solution for 30 sec. The alteration of structural and non-structural chemical components content of bamboo strands was evaluated. Steam and washing treatments with various concentrations of sodium hydroxide solution considerably reduced the extractive content of bamboo strands, and the cell wall chemical components of the strand in the small degree. FTIR analysis showed noticeable changes in peaks related to hemicellulose and lignin. The relative crystallinity increased significantly after steam and washing treatment with sodium hydroxide up to 3% concentration. SEM Images showed smooth and clean strands surface after washing with 3% sodium hydroxide.

An Experimental Study on Influence of Concrete Strength and Cover Size on Transfer Length of Prestressing Strand in Pretensioned Prestressed Concrete Members (압축강도 및 피복두께에 따른 프리텐션 부재의 전달길이 변화에 관한 연구)

  • 오병환;김동백;김의성;최영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.355-358
    • /
    • 1999
  • In recent times, large strands have become increasingly popular in the pretensioned prestressed industry and have found wide applications in varying geometries of sections. However, use of such elements and their behavior in several situations have been questioned with respect to anchoring of these strands in concrete. In addition, the experimental results available on bond are limited and information relating to large strands is rare. This study was conducted to determine the influence of some of the inadequately examined properties on transfer length of prestressing strand. The principle variables considered were strand size, concrete strength and clear bottom cover. The experimental results indicate clearly that concrete strength at transfer and cover size influence transfer length significantly. An attempt was made to suggest prediction equation for transfer length including above parameters.

  • PDF

Design of PSC-I Bridge with Widely Spaced Girder based on Parametric Study (변수연구를 통한 소수주형 PSC-I 거더 설계)

  • 심종성;김민수;김영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.507-512
    • /
    • 2002
  • Prestressed concrete I-girders were used in the bridge applications in the early 1950s. During the last four decades, the most widely used girder length of bridges have been below 30 meters. The main objective of this study is to develope the alternative section for widely spaced girder of 30 meters span bridge. Girder spacing, the number of strands and compressive strength of concrete are major parameters for widely spaced girders. The optimal girder spacing is determined through the parameter studies of design using widely spaced girders. 30m span bridges of widely girder spacing must use high-strength concrete. Although the basic unit cost of concrete is higher for high-strength concrete, it may be partially or even fully offset by reduced quantities of concrete as result of the smaller number of girders used. High-strength concrete girders have more prestressing strands per girder, but the total number of strands for all of the girders is less than that required for the larger number of normal-strength concrete girders. It could design PSC-I Birdge with widely spaced girder owing to high-strength concrete.

  • PDF

NEW FAMILIES OF HYPERBOLIC TWISTED TORUS KNOTS WITH GENERALIZED TORSION

  • Keisuke, Himeno;Masakazu, Teragaito
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.203-223
    • /
    • 2023
  • A generalized torsion element is an obstruction for a group to admit a bi-ordering. Only a few classes of hyperbolic knots are known to admit such an element in their knot groups. Among twisted torus knots, the known ones have their extra twists on two adjacent strands of torus knots. In this paper, we give several new families of hyperbolic twisted torus knots whose knot groups have generalized torsion. They have extra twists on arbitrarily large numbers of adjacent strands of torus knots.