• Title/Summary/Keyword: Strain-softening effect

Search Result 89, Processing Time 0.027 seconds

A Study of Creep Characteristics of ABS (Acrylonitrile Butadiene Styrene) for Different Stress Levels and Temperatures (응력과 온도에 따른 ABS의 크리프특성에 관한 연구)

  • Kang, Suk-Choon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1137-1143
    • /
    • 2012
  • Creep characteristic is an important failure mechanism when evaluating engineering materials that are soft material as polymers or used as mechanical elements at high temperatures. One of the popular thermo-plastic polymers, Acrylonitrile Butadiene Styrene (ABS) which is used broadly for machine elements material, as it has excellent mechanical properties such as impact resistance, toughness and stiffness compared to other polymers, was studied for creep characteristic at different levels of stress and temperatures. From the experimental results, the creep limit of ABS at room temperature is 80 % of tensile strength which is higher than PE and lower than PC or PMMA. Also the creep limits decreased to linearly as the temperatures increased, up to $80^{\circ}C$ which is the softening temperature of Butadiene ($82^{\circ}C$). Also the secondary stage of creep among the three creep stages for different levels of stress and temperature was non-existent which occurred for many metals by strain hardening effect.

Influence of Ag Addition on the Mechanical Properties and Electrical Conductivity of Cu-Mg-P Alloys (Cu-Mg-P 합금의 기계적 성질과 전기전도도에 미치는 Ag첨가의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ki-Tae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.1
    • /
    • pp.10-16
    • /
    • 2010
  • The microstructure of Cu-Mg-P alloy sheet consisted of Cu matrix and very fine MgP precipitate, and it has been observed that the microstructure remains virtually unchanged by Ag additions up to 2%. Ag solutes were dissolved into the matrix and hardly found in the precipitates. The hardness increased with increase of the Ag content, while the conductivity slightly decreased. Strain hardening through cold rolling was found to be effective in improving the hardness, especially in high-Ag alloys. Aging treatment was conducted either before the first cold rolling or between the first and the final cold rolling, and the conductivity was significantly higher at the former case, regardless of the Ag content. Softening of Cu-Mg-P alloy sheet was remarkable above $400^{\circ}C$ and the Ag content did not show any significant effect on it.

A Study of Localization with Material Properties Using Numerical Method (재료의 특징에 따른 국부화에 대한 수치해석적 연구)

  • 황두순;이병섭;이용성;윤수진;홍성인
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.395-403
    • /
    • 2000
  • Formation of Shear Band under the adiabatic condition is widely observed In the engineering materials during rapidly forming process lot a thermally rate-dependent material. The shear band stems from evolution of a narrow region in which an intensive plastic flow occurs. The shear band often plays a role of a precursor of the ductile fracture during a forming process. The objective of this study is to investigate the localization behavior using numerical method. In this work, the implicit finite difference scheme is employed due to the ease of convergence and the numerical stability It is noted that physical and mechanical properties of materials determine how the shear band is formed and then localized. Material properties can be characterized with inertia number dissipation number and diffusion number. It is observed that the dimensionless numbers effect on localization. Using a parametric study, comparison was made between CRS-1018 steel with WHA (tungsten heavy alloy). The deformation behavior of material in this study include an isotropic hardening as well as thermal softening. Moreover, this study suggests that a kinematic hardening constitutive relation be required to predict a more accurate strain level at a shear band.

  • PDF

Low Cycle Fatigue Behaviour of AISI 304L Austenitic Stainless Steel Weldment (AISI 304L 오오스테나이트 스테인레스 강 용접부 의 Low Cycle Fatigue 거동에 관한 연구)

  • 김환태;황선효;남수우
    • Journal of Welding and Joining
    • /
    • v.2 no.1
    • /
    • pp.49-57
    • /
    • 1984
  • The influence of weld defect, residual stress and microstructure on the Low Cycle Fatigue(L. C. F.) behaviour of AISI 304L austenitic stainless steel weldment has been studied. The specimens were welded by shielded metal are welding process, post weld heat treated(PWHT) at 900.deg.C for 1.5hrs, and tested under total strain controlled condition at room temperature. The results of the experiment showed that weld defect affected the L.C.F. behaviour of weldment deleteriously compared to the residual stress or microstructure, and it reduced the L.C.F. life about 70-80%. The PWHT exhibited beneficial effect on the L.C.F. behaviour and increased the L.C.F. life about 120%. This enhancement by PWHT was attributed to the removal of residual stress and recovery of weld metal ductility. The cyclic stress flow of as welded specimens showed intermediate cyclic softening, whereas those of heat treated specimens showed continuous cyclic hardening, and this difference was explained in terms of the residual stress removal and dislocation behaviour. Scanning electron microscopy studies of fatigue fracture surface showed that weld defects of large size and near weld surface were detrimental to the L.C.F. behaviour of weldment.

  • PDF

Effect of the Compositional Modulation on the Plasticity of Amorphous Alloys: Shear Localization Viewpoint Interpretation (비정질 합금의 조성분리가 소성에 미치는 영향: 변형국부화 관점에서의 해석)

  • Lee, Mi-Rim;Park, Kyoung-Won;Sa, Hyun-Je;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.687-693
    • /
    • 2009
  • Experiments have demonstrated that a moderate amount of Be added to $Zr_{57.5}Cu_{38.3}Al_{4.2}$ amorphous alloy enhances the plasticity of the alloy. In particular, $Zr_{54}Cu_{36}Al_{4}Be_{6}$ alloy exhibited 19% of strain to fracture along with a strength exceeding 2 GPa. Energy dispersive x-ray spectroscopy conducted on the $Zr_{54}Cu_{36}Al_{4}Be_{6}$ alloy exhibited the presence of compositional modulation, indicating that nm-scale phase separation had occurred at local regions. In this study, the role played by the nm-scale phase separation on the plasticity was investigated in terms of structural disordering, structural softening and shear localization in order to better understand the structural origin of the enhanced plasticity shown by the developed alloy.

Shear strength and shear behaviour of H-beam and cruciform-shaped steel sections for concrete-encased composite columns

  • Keng-Ta Lin;Cheng-Cheng Chen
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.423-436
    • /
    • 2023
  • In this research, we tested 10 simply supported concrete-encased composite columns under monotonic eccentric loads and investigated their shear behaviour. The specimens tested were two reinforced concrete specimens, three steel-reinforced concrete (SRC) specimens with an H-shaped steel section (also called a beam section), and five SRC specimens with a cruciform-shaped steel section (also called a column section). The experimental variables included the transverse steel shape's depth and the longitudinal steel flange's width. Experimental observations indicated the following. (1) The ultimate load-carrying capacity was controlled by web compression failure, defined as a situation where the concrete within the diagonal strut's upper end was crushed. (2) The composite effect was strong before the crushing of the concrete outside the steel shape. (3) We adjusted the softened strut-and-tie SRC (SST-SRC) model to yield more accurate strength predictions than those obtained using the strength superposition method. (4) The MSST-SRC model can more reasonably predict shear strength at an initial concrete softening load point. The rationality of the MSST-SRC model was inferred by experimentally observing shear behaviour, including concrete crushing and the point of sharp variation in the shear strain.

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.

A Numerical Analysis on the Collapse and Backfill Mechanism of the Abandoned Mine Cavity (폐광의 점진적 파괴 및 뒷채움 효과에 대한 해석적 연구)

  • Lee, Jun-Suk;Bang, C.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.62-71
    • /
    • 2000
  • The abandoned mines causing settlement of the surface above and collapse of the cavities are the major influencing factor on the stability of the nearby underground structures. To prevent the harmful effect, the backfill methods are commonly applied to the cavities although the design criteria and the analysis method are not properly addressed in some cases. An approximate analytical method together with the numerical technique is considered in this study to simulate the gradual deterioration of the rock masses around the cavities and, therefore, the influential zone to the underground structures passing through the cavities. Also considered in this study is the backfill effect on the stability of the rock masses around the cavities. Specifically, the incomplete backfill effect is compared with that of the idealized backfill method by adopting elasto-plastic analysis involving a strain softening material law.

  • PDF

Analysis of Nonlinear Behaviors of Shotcrete-Steel Support Lining Considering the Axial Force Effects (축력의 영향을 고려한 숏크리트-강지보 합성 라이닝의 비선형 거동 분석)

  • Yu, Jeehwan;Kim, Jeongsoo;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.357-367
    • /
    • 2017
  • Bending and axial forces simultaneously occur at the cross-section of a shotcrete lining reinforced with steel supports due to the tunnel geometry. The shotcrete has changing flexural stiffness depending on the axial forces and, as a result, severely nonlinear behavior. The mechanical properties of a shotcrete-steel composite also depend on the type of steel support. This study presents a fiber section element model considering the effect of axial force to evaluate the nonlinear behavior of a shotcrete-steel composite. Additionally, the model was used to analyze the effects of different types of steel supports on the load capacity. Furthermore, a modified hyperbolic model for ground reaction, including strain-softening, is proposed to account for the ground-lining interaction. The model was validated by comparing the numerical results with results from previous load test performed on arched shotcrete specimens. The changes in mechanical responses of the lining were also investigated. Results show a lining with doubly reinforcement rebar has similar load capacity as a lining with H-shaped supports. The use of more materials for the steel support enhances the residual resistance. For all types of steel reinforcement, the contribution of steel supports during peak load decreases as the ground becomes stiffer.

Experimental Studies of Shearing Properties on Compacted Nakdong River Silty Sands under Unconsolidated Undrained Condition (비압밀비배수조건에서 다져진 낙동강 실트질 모래의 전단거동에 대한 실험적 연구)

  • Khin, Swe Tint;Kim, Young-Su
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.57-62
    • /
    • 2010
  • In this study, the effect of different silt contents on the shear characteristics of silty sands was evaluated. Two series of triaxial compression tests were performed on the cylindrical specimens of compacted Nakdong river sand with 10% and 30% silt contents under unconsolidated undrained condition. All identical specimens were prepared to compact with same initial water content for five layers and saturated using control panel and then sheared under initial effective confining pressure, 100 to 400kPa. All specimens exhibited a strain softening tendency after failure in stress-strain curves and deviator stresses of specimens with 10% silt content were greater than those of specimens with 30% silt content. Pore water pressures of specimens with 10% silt content were observed negative(i.e. swelling) due to increasing void ratio after failure but those of specimens with 30% silt content were shown only positive. The behavior of compacted cylindrical specimens with low silt content was more dilative than that of high silt content. Peak deviator stresses decreased as increasing silt content and peak pore water pressures increased as increasing silt content.