• Title/Summary/Keyword: Strain-life Curve

Search Result 81, Processing Time 0.025 seconds

Evaluation of chassis component reliability considering variation of fatigue data (피로 자료 분산을 고려한 자동차 부품의 신뢰도 해석)

  • Nam G.W;Lee B.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.690-693
    • /
    • 2005
  • In this paper, probabilistic distribution of fatigue life of chassis component is determined statistically by applying the design of experiments and the Pearson system. To construct $p-\varepsilon-N$ curve, the case that fatigue data are random variables is attempted. Probabilistic density function(p.d.f) for fatigue life is obtained by design of experiment and using this p.d.f fatigue reliability about any aimed fatigue life can be calculated. Lower control arm and rear torsion bar of chassis component are selected as examples for analysis. Component load histories, which are obtained by multi-body dynamic simulation for Belsian load history, are used. Finite element analysis are performed using commercial software MSC Nastran and fatigue analysis are performed using FE Fatigue. When strain-life curve itself is random variable, probability density function of fatigue life has very little difference from log-normal distribution. And the case of fatigue data are random variables, probability density functions are approximated to Beta distribution. Each p.d.f is verified by Monte-Carlo simulation.

  • PDF

Evaluation of Chassis Component Reliability Considering Variation of Fatigue Data (피로 자료 분산을 고려한 자동차 부품의 신뢰도 해석)

  • Nam, Gi-Won;Lee, Byung-Chai
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.2 s.191
    • /
    • pp.110-117
    • /
    • 2007
  • In this paper, probabilistic distribution of chassis component fatigue life is determined statistically by applying the design of experiments and the Pearson system. To construct p - ${\varepsilon}$ - N curve, the case that fatigue data are random variables is attempted. Probabilistic density function (p.d.f) for fatigue life is obtained by the design of experiment and using this p.d.f fatigue reliability, any aimed fatigue life can be calculated. Lower control arm and rear torsion bar of chassis components are selected as examples for analysis. Component load histories which are obtained by multi-body dynamic simulation for Belsian load history are used. Finite element analysis is performed by using commercial software MSC Nastran and fatigue analysis is performed by using FE Fatigue. When strain-life curve itself is random variable, the probability density function of fatigue life has very little difference from log-normal distribution. And the cases of fatigue data are random variables, probability density functions are approximated to Beta distribution. Each p.d.f is verified by Monte-Carlo simulation.

Tension-Compression Fatigue Behavior of Carbon Fabric/Epoxy Laminates (Carbon Fabric/Epoxy 적층판의 인장-압축 피로거동)

  • 김진봉;김태욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.60-64
    • /
    • 2001
  • In this paper, the tension-compression fatigue test method and the fatigue life characteristics of carbon fabric/epoxy laminate coupon are presented. To avoid the buckling during the compression, a proper design for the test coupons is essential. The critical buckling loads for the coupons are calculated by assuming the coupons as columns under two types of fixed conditions. The first is that both ends of each coupon are perfectly clamped, the second is that both ends of each coupon are simply supported. The strain-load curves are obtained by compressing the representative coupons, on each surface of which a strain gage is attached. The buckling loads obtained from the tests are all between the two calculated critical buckling loads. All the coupons are broken by the compression during the fatigue tests. It is estimated to be the reason that the fatigue load causes delamination before the eventual failure of each coupon, and sequentially the micro-buckling in the delaminated region drives each coupon into fatigue failure during the compression. The S-N curve, the fatigue life characteristics of carbon fabric/epoxy is obtained.

  • PDF

Fatigue Life Evaluation by ${\sigma}-N$ and ${\epsilon}-N$ Approaches Considering Residual Stresses (잔류응력을 고려한 국부변형률과 공칭응력 기준 피로수명 평가)

  • Goo, Byeong-Choon;Yang, Sung-Yong;Seo, Jung-Won;Jun, Hung-Chai
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.342-347
    • /
    • 2004
  • To evaluate the fatigue lives of welded joints taking into residual stress relaxation, two approaches are applied. One is based on the conventional local strain analyses. The other is based on a model developed by the authors. In the first approach, the Ramberg-Osgood relation, Lawrence model and S.W.T. parameter are used. In the second approach, The S-N curve for a welded joint is deduced from that of the parent material. Residual stress relaxation obtained by finite element analysis is considered. Finally, we evaluate the fatigue lives for four weld details using the two approaches.

  • PDF

Evaluation of Tractor PTO Severeness during Rotary Tillage Operation (로타리 경운작업 시 트랙터 PTO 가혹도 평가)

  • Kim, Yong-Joo;Chung, Sun-Ok;Choi, Chang-Hyun;Lee, Dae-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.163-170
    • /
    • 2011
  • Analysis of load on major parts of the tractor power drive line is critical for efficient and optimum design of a tractor. The purpose of this study was to evaluate severeness of the tractor PTO driving axle during rotary tillage operation. First, S-N (stress vs. number of cycle) curve of a PTO driving gear was obtained through the fatigue life test using a PTO dynamometer. Second, PTO severeness was evaluated during rotary tillage operation. Torque measurement system was constructed with strain-gauge sensors to measure torque of a PTO axle, an I/O interface to acquire the sensor signals, and an embedded system to calculate severeness. The severeness of PTO was analyzed using measured torque data during rotary tillage. In the PTO gear life fatigue test, breakage time and bending stress of the gear were measured by tooth widths and torque change during the fatigue life test. The S-N curve showed a good linear relationship between bending stress and number of cycle (life) with a coefficient of determination of 0.97. For PTO severenss evaluation, rotary tillage operations were conducted at two PTO rotational speeds (level-1, level-2) under different paddy and upland field sites with different soil conditions. Results of averaged relative severeness for PTO level-1 and PTO level-2 were 1.96 and 3.34, respectively, at paddy field sites, and they were 1.36 and 2.51, respectively, at upland field sites. The results showed that the PTO driving axle experienced more severe load during rotary tillage at paddy fields than at upland sites, and relative severeness was greater at the higher PTO rotational speed under all of the soil conditions.

Mechanical Properties of Hot Working Die Steel and Fatigue Analysis Model of Casting Mold (열간 금형재의 기계적 성질과 주조금형 피로해석모델)

  • 여은구;황성식;이용신;곽시영;김정태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.405-408
    • /
    • 2003
  • Generally, the life of casting mold is limited by fatigue fracture or dimensional inaccuracy originated from wear in high temperature. Although recent research of metallic materials in high temperature fatigue have been much accomplished, many studies on brittle material as a die steel in high temperature fatigue does not have been reported. Especially, the study on the fatigue behavior over the transformation temperature is not studied sufficiently because of its difficult analysis and experiment. Therefore, reliable results of brittle material in high temperature fatigue behavior are needed. In this paper, stress-strain curves and stress-life curves in die STD61 steel are carefully examined between room temperature and 90$0^{\circ}C$, as the basic experimental data are used to predict from fatigue life of casting mold.

  • PDF

A Study on Fretting Fatigue Life Prediction for Cr-Mo Steel(SCM420) (크롬-몰리브덴강(SCM420)에 대한 프레팅 피로수명 예측에 관한 연구)

  • Kwak, Dong-Hyeon;Roh, Hong-Rae;Kim, Jin-Kwang;Cho, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.123-130
    • /
    • 2007
  • Recently, a lot of work and interest have been devoted to the development of multiaxial fatigue parameters for fretting fatigue life prediction. In this study, the fretting fatigue lift and critical location ware estimated and evaluated through the multiaxial fatigue theories in a cylinder-on-flat contact configuration far Cr-Mo steel, SCM420, the material commonly is used in gears of the automobile and rollers of the conveyor. The strain-life curve was obtained from fatigue test for SCM420. The Fretting fatigue life and critical location were estimated through stress distributions, SWT-parameters and FS-parameters obtained from FEA. This paper showed possibility of applying multiaxial fatigue theories to fretting fatigue lift prediction comparing predicted life with experimental results.

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams using High Strength Concrete (고강도 콘크리트를 사용한 철근콘크리트 보의 전단피로거동에 관한 연구)

  • 곽계환;박종건
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.119-130
    • /
    • 1999
  • Recently, as the building structure has been larger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. From the test result, High-strength concrete with cylinder strength of 1,200kgf/$\textrm{cm}^2$ in 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57~66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

Study on Fatigue Behavior of Carbon Fiber Reinforced Polyimide Composites (탄소섬유강화 복합적층판의 피로특성에 관한 연구)

  • 이창수;황운봉;한경섭;윤병일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.49-60
    • /
    • 1991
  • Fatigue behavior of carbon fiber reinforced polyimide composite materials was studied experimentally and analytically. The physical variables, such as cyclic displacements and hysteresis loop energy were observed during fatigue tests. Fatigue life of the investigated [0/90]$_{2S}$ laminates was predicted by H'||'&'||'H models which was proposed based on the fatigue modulus and resultant strain. The predicted fatigue life by H'||'&'||'H curves was reasonably close to the experimental data. Fractography study shows that fatigue failure mechanism of [0/90]$_{2S}$ laminated composite materials involves failure break, matrix tearing and fiber-matrix debonding as well as delamination of layers.

Fatigue Crack Initiation and Propagation From Two Micro Hole Defects (두개의 미소원공결함에서의 피로크랙발생과 전파에 관한 연구)

  • Song, Sam-Hong;Bae, Joon-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.842-849
    • /
    • 1997
  • The aim of this study is an investigation of the interaction of two micro hole defects affecting fatigue crack initation life and propagation behavior. The locatio of two micro hole defects was considered as an angle of alignment and the distance between the centers of two micro hole defects. The fatigue cracking behavior is experimented under bending. When micro defects are located close to each other, the fatigue crack initiation lives are varied with their relative locations. In the experiments, the area of local plastic strain strongly played a role in the fatigue crack initiation lives. Therefore we introduce a parameter which contains the plastic deformation area at stress concentrations and propose a fatigue crack initiation life prediction curve. In addition, the directions and propagation rates of fatigue cracks initiated at two micro hole defects are studied experimentally.