• 제목/요약/키워드: Strain-based

검색결과 4,990건 처리시간 0.029초

THE EFFECT OF MONOMER TO POWDER RATIO ON POLYMERIZATION SHRINKAGE-STRAIN KINETICS OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Kim, Sung-Hun
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.735-742
    • /
    • 2007
  • Statement of problem. Although a number of previous investigations have been carried out on the polymerization shrinkage-strain kinetics of provisional crown and fixed partial denture (FPD) materials, the effect of the changes of liquid monomer to powder ratio on its polymerization shrinkage-strain kinetics has not been reported. Purpose. The purpose of this study was to investigate the influence of liquid monomer to powder ratio of polymer-based provisional crown and FPD materials on the polymerization shrinkage-strain kinetics. Material and methods. Chemically activated acrylic provisional materials (Alike, Jet, Snap) were investigated. Each material was mixed with different liquid monomer to powder ratios by volume (1.0:3.0, 1.0:2.5, 1.0:2.0, 1.0:1.5, 1.0:1.0). Time dependent polymerization shrinkage- strain kinetics of all materials was measured by the bonded-disk method as a function of time at $23^{\circ}C$. Five recordings were taken for each ratio. The results were statistically analyzed using one-way ANOVA and the multiple comparison Scheffe test at the significance level of 0.05. Trends were also examined by linear regression. Results. At 5 minutes after mixing, the polymerization shrinkage-strains of all materials ranged from only 0.01% to 0.49%. At 10 minutes, the shrinkage-strain of Alike was the highest, 3.45% (liquid monomer to powder ratio=1.0:3.0). Jet and Snap were 2.69% (1.0:2.0) and 1.58% (1.0:3.0), respectively (P>0.05). Most shrinkage (94.3%-96.5%) occurred at 30 minutes after mixing for liquid monomer to powder ratio, ranging from 1.0:3.0 to 1.0:1.0. The highest polymerization shrinkage-strain values were observed for the liquid monomer to powder ratio of 1.0:3.0. At 120 minutes after mixing, the shrinkage-strain values were 4.67%, 4.18%, and 3.07% for Jet, Alike, and Snap, respectively. As the liquid monomer to powder ratio increased, the shrinkage-strain values tend to be decreased linearly (r=-0.769 for Alike, -0.717 for Jet, -0.435 for Snap, $r^2=0.592$ for Alike, 0.515 for Jet, 0.189 for Snap; P<0.05). Conclusion. The increase of the liquid monomer to powder ratio from 1.0:3.0 to 1.0:1.0 had a significant effect on the shrinkage-strain kinetics of polymer-based crown and FPD materials investigated. This increased the working time and decreased the shrinkage-strain during polymerization.

PZT 소자의 정압전 응답을 이용한 보 구조물의 모드 변형에너지기반 손상 모니터링 (Modal Strain Energy-based Damage Monitoring in Beam Structures using PZT's Direct Piezoelectric Response)

  • 호 득 유이;이포영;김정태
    • 한국전산구조공학회논문집
    • /
    • 제25권1호
    • /
    • pp.91-99
    • /
    • 2012
  • 본 연구에서는 PZT 소자의 정압전 효과에 의한 동적 응답신호를 이용하는 보 구조물 손상 모니터링 기법을 제안하였다. 특히, 모드 변형에너지기반 보 구조물 손상 모니터링에 PZT 정압전 응답신호를 입력자료로 활용하는 방안에 대한 연구에 주안점이 있다. 먼저, PZT 소자의 정압전 효과 및 동적 변형률 응답의 이론적 배경을 요약하였다. 다음으로, 모드 변형에너지기반 보 구조물 손상위치 모니터링 기법을 제시하였다. 제시된 기법의 적합성을 검증하기 위해, 캔틸레버 보 모형을 대상으로 강제진동 실험을 수행하였으며, 세 종류의 센서(가속도계, PZT 센서, 변형률계)를 통해 동적 응답신호가 계측되었다. 손상 전후에 계측된 이들 진동신호들을 사용하여 모드 변형에너지기반의 손상위치 모니터링이 수행되었다.

협동 로봇 스킨에 적용하기 위한 재료의 성별 선호도와 관련된 자료 조사 (Evaluation of Materials Related to Gender-Preferences for the Application of Cooperative Robot Skin)

  • 손민희;신동원;이선영
    • 적정기술학회지
    • /
    • 제7권1호
    • /
    • pp.2-25
    • /
    • 2021
  • 본 연구에서는 일반적으로 협동 로봇의 스킨으로 사용될 수 있는 고분자 재료 선정 및 기계적 특성 검사를 진행하고, 각 재료에 대한 성별 선호도 설문조사를 진행하였다. 조사는 20~30세의 근무자 225명(남: 124명, 여: 101명)을 대상으로 작업 중 로봇과 가장 많이 접촉하는 어깨, 팔꿈치 별로 선정된 Dragon-skin, Ecoflex, 및 polydimethylsiloxane(PDMS)에 대한 성별에 따른 선호도 조사로 진행하였다. 설문은 각각 설문자들이 느끼는 재료에 대한 인식 단단함, 끈적임, 익숙함, 선호도 4종류로 구분하여 진행되었고, 단단함과 끈적임은 각각 재료의 변형률과 접촉각으로 측정되었다. 선호도 조사 결과, 여성은 변형률이 작은, 더 단단한 재료를 선호하는 반면, 남성은 변형률이 큰 부드러운 재료를 선호했다. 성별에 따른 선호도와 관련하여 재료의 특성을 평가한 결과, 여성은 끈적임이 낮고 변형률이 낮은 Dragon-skin을 선호하는 경향이 있는 반면, 남성은 끈적임에 관계없이 변형률이 높은 Ecoflex를 선호하는 경향이 있음을 확인하였다. 따라서 이러한 결과는 협동 로봇 스킨 제작을 고려할 때 재료 선택에 기준이 될 것으로 보인다.

Identification of moving train loads on railway bridge based on strain monitoring

  • Wang, Hao;Zhu, Qingxin;Li, Jian;Mao, Jianxiao;Hu, Suoting;Zhao, Xinxin
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.263-278
    • /
    • 2019
  • Moving train load parameters, including train speed, axle spacing, gross train weight and axle weights, are identified based on strain-monitoring data. In this paper, according to influence line theory, the classic moving force identification method is enhanced to handle time-varying velocity of the train. First, the moments that the axles move through a set of fixed points are identified from a series of pulses extracted from the second derivative of the structural strain response. Subsequently, the train speed and axle spacing are identified. In addition, based on the fact that the integral area of the structural strain response is a constant under a unit force at a unit speed, the gross train weight can be obtained from the integral area of the measured strain response. Meanwhile, the corrected second derivative peak values, in which the effect of time-varying velocity is eliminated, are selected to distribute the gross train weight. Hence the axle weights could be identified. Afterwards, numerical simulations are employed to verify the proposed method and investigate the effect of the sampling frequency on the identification accuracy. Eventually, the method is verified using the real-time strain data of a continuous steel truss railway bridge. Results show that train speed, axle spacing and gross train weight can be accurately identified in the time domain. However, only the approximate values of the axle weights could be obtained with the updated method. The identified results can provide reliable reference for determining fatigue deterioration and predicting the remaining service life of railway bridges.

대사당량(MET)과 최대긴장력(Peak Strain Score)에 근거하여 측정한 스포츠 활동량과 여대생의 요골 골밀도와의 상관성 (The Relationship between Lifetime Sports Activity Measured with MET and Peak Strain Score and Bone Measurement in College-aged Women)

  • 이은남;최은정
    • 대한간호학회지
    • /
    • 제38권5호
    • /
    • pp.667-675
    • /
    • 2008
  • Purpose: The aim of this study was to compare the relation between differently measured sports activities (metabolic equivalent [MET] and peak strain score) and distal radius bone mineral density in college-aged women. Methods: lifetime sports activity was scored in two different ways: 1) a sports activity score by multiplying the intensity (METs) and duration and 2) a sports activity score by adding up physical strain scores based on the ground reaction force of each sports activities. Bone mineral density was measured using dual energy x-ray densitometry (DTX-200) in the distal radius site. Results: In stepwise multiple regression analysis, body weight and sports activities during the college period were significant positive predictors for distal radius bone mineral density. The explained variance of sports activity measured with a peak strain score (8.8%) for distal radius bone mineral density was higher than one measured with the MET score (3.3%). Conclusion: It can be concluded that sports activity scores based on MET and peak strain scores during college are very important for determining the bone mineral density in the distal radius site in women under 30.

Friction Stir Welding Analysis Based on Equivalent Strain Method using Neural Networks

  • Kang, Sung-Wook;Jang, Beom-Seon
    • 한국해양공학회지
    • /
    • 제28권5호
    • /
    • pp.452-465
    • /
    • 2014
  • The application of friction stir welding (FSW) technology has been extended to all industries, including shipbuilding. A heat transfer analysis evaluates the weldability of a welded work piece, and elasto-plastic analysis predicts the residual stress and deformation after welding. A thermal elasto-plastic analysis based on the heat transfer analysis results is most frequently used today. However, its application to large objects such as offshore structures and hulls is impractical owing to its long computational time. This paper proposes a new method, namely an equivalent strain method using the inherent strain, to overcome the disadvantages of the extended analysis time. In the present study, a residual stress analysis of FSW was performed using this equivalent strain method. Additionally, in order to reflect the external constraints in FSW, the reaction force was predicted using a neural network, Finally, the approach was verified by comparing the experimental results and thermal elasto-plastic analysis results for the calculated residual stress distribution.

The Effect of a Long-Term Cyclic Strain on Human Dermal Fibroblasts Cultured in a Bioreactor on Chitosan-Based Scaffolds for the Development of Tissue Engineered Artificial Dermis

  • Lim, Sae-Hwan;Son, Young-Sook;Kim, Chun-Ho;Shin, Heung-Soo;Kim, Jong-Il
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.370-378
    • /
    • 2007
  • Mechanical stimulation is known to activate several cellular signal transduction pathways, leading to the induction of signaling molecules and extracellular matrix (ECM) proteins, thereby modulating cellular activities, such as proliferation and survival. In this study, primary human dermal fibroblasts (HDFs) were seeded onto chitosan-based scaffolds, and then cultured for 3 weeks in a bioreactor under a cyclic strain of 1 Hz frequency. Compared to control samples cultured under static conditions, the application of a cyclic strain stimulated the proliferation of HDFs in I week, and by week 3 the thickness of the cell/scaffold composites increased 1.56 fold. Moreover, immunohistochemical staining of the culture media obtained from the cell/scaffold samples subjected to the cyclic strain, revealed increases in the expression and secretion of ECM proteins, such as fibronectin and collagen. These results suggest that the preconditioning of cell/scaffold composites with a cyclic strain may enhance the proliferation of HDFs, and even facilitate integration of the engineered artificial dermal tissue into the host graft site.

EFFECT OF STRENGTH MISMATCH AND DYNAMIC LOADING ON THE DUCTILE CRACK INITIATION FROM NOTCH ROOT

  • An, Gyn-Baek;Yoshida, Satoshi;Ohata, Mitsuru;Toyoda, Masao
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.145-150
    • /
    • 2002
  • It has been well known that ductile fracture of steels is accelerated by triaxial stresses. The characteristics of ductile crack initiation in steels are evaluated quantitatively using two-parameters criterion based on equivalent plastic strain and stress triaxiality. It has been demonstrated by authors using round-bar specimens with circumferential notch in single tension that the critical strain to initiate ductile crack from specimen center depends considerably on stress triaxiality, but surface cracking of notch root is in accordance with constant strain condition. In order to evaluate the stress/strain state in the specimens, especially under dynamic loading, a thermal, elastic-plastic, dynamic finite element (FE) analysis considering the temperature rise due to plastic deformation has been carried out. This study provides the fundamental clarification of the effect of strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, loading mode and loading rate on critical condition to initiate ductile crack from notch root using equivalent plastic strain and stress triaxiality based on the two-parameter criterion obtained on homogeneous specimens under static tension. The critical condition to initiate ductile crack from notch root for strength mismatched bend specimens under both static and dynamic loading would be almost the same as that for homogeneous tensile specimens with circumferential sharp notch under static loading.

  • PDF

수정변형률 영향계수에 근거한 직사각형 및 복합 얕은기초 침하량 산정법 (Improved Strain Influence Diagram and Settlement Estimation for Rectangular and Multiple Footings in Sand)

  • 박동규;이준환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.633-640
    • /
    • 2005
  • Most existing methods for the footing settlement estimation are for either isolated or strip footings. No sufficient details are available for settlement calculation of footings with different shapes and multiple footing conditions, which are commonly adopted in actual construction projects. In this paper, estimation of footing settlements for various footing conditions of different shapes and multiple conditions is investigated based on Schmertmann's method with focus on values of the strain influence factor $I_z$. In order to examine the effect of multiple footing conditions, field plate load tests are performed in sands using single and double plates. 3D non-linear finite element analyses are also performed for various footing conditions with different footing shape and distance ratios. Results obtained in this study indicate that there are two significant components in the strain influence diagram that need to be taken into account for settlement estimation of rectangular and multiple footings: depth of $I_{zp}$ and depth of strain influence zone. Based on results from experimental and 3D non-linear finite element analyses, improved strain influence diagrams available for various footing conditions are proposed.

  • PDF

MS Point 저감 용접재에 적용한 냉각시 용접부 열변형률 분석에 관한 연구 (A Study on Analyzing Thermal Strain of Weldment during Cooling used at Low MS Point Weld Consumables)

  • 하윤석;남성길;박세진;권창길
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.37-43
    • /
    • 2013
  • This study targets to make clear the connection between MS (Martensite start) point and welding shrinkage. We approved that a Martensite-transformed weldment may not yield state under low MS point, but also admitted the limitation of numerical calculation by inherent strain approach or thermal strain approach. Therefore, new thermal strain formulae during cooling stages were made. As a thermal strain is obtained by integrating thermal extension coefficient, a constant of integration should be decided. In our suggested formulae, the origin was based on totally remained austenite, and added strain from volume changes in Martensite transformation was based on totally transformed ferrite. Through the suggested methodology, It is verified that an MS point under a critical temperature can let weld shrinkage relax and the critical value can be obtained. For supporting this process, 15 weld-consumables were made, were tested by fillet type and were measured. As a result, a positive correlation between MS point and level of weld-distortion was obtained, but it was rather weak.