• Title/Summary/Keyword: Strain-based

Search Result 5,018, Processing Time 0.035 seconds

Modeling of an embedded carbon nanotube based composite strain sensor

  • Boehle, M.;Pianca, P.;Lafdi, K.;Chinesta, F.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.263-273
    • /
    • 2015
  • Carbon nanotube strain sensors, or so called "fuzzy fiber" sensors have not yet been studied sufficiently. These sensors are composed of a bundle of fiberglass fibers coated with CNT through a thermal chemical vapor deposition process. The characteristics of these fuzzy fiber sensors differ from a conventional nanocomposite in that the CNTs are anchored to a substrate fiber and the CNTs have a preferential orientation due to this bonding to the substrate fiber. A numerical model was constructed to predict the strain response of a composite with embedded fuzzy fiber sensors in order to compare result with the experimental results obtained in an earlier study. A comparison of the numerical and experimental responses was conducted based on this work. The longitudinal sensor output from the model matches nearly perfectly with the experimental results. The transverse and off-axis tests follow the correct trends; however the magnitude of the output does not match well with the experimental data. An explanation of the disparity is proposed based on microstructural interactions between individual nanotubes within the sensor.

Bending Spring Model for Stable Strain-Based Dynamics in Triangular Meshes (삼각형 메쉬에서 안정적인 변형률 기반 동역학을 위한 굽힘 스프링 모델)

  • Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.341-344
    • /
    • 2022
  • 본 논문에서는 삼각형 메쉬 기반에서 변형률 기반 동역학(Strain-based dynamics, SBD)을 안정적으로 표현할 수 있는 굽힘 스프링 구조와 감쇠 기법에 대해 설명한다. SBD는 삼각형 메쉬의 에지 길이(Edge length) 기반의 에너지 대신 변형률(Strain)을 활용하여 에너지를 모델링한다. 하지만, 비정상적인 삼각형(Degenerate triangle)인 경우 변형률이 불안정하게 계산되어 잘못된 방향으로 늘어나는 문제가 발생한다. 본 논문에서는 이러한 문제를 효율적으로 처리할 수 있는 굽힘 스프링(Bending spring) 구조에 대해 소개한다. 결과적으로 본 논문에서 제안하는 기법은 안정적으로 SBD를 처리할 수 있기 때문에 다양한 재질의 옷감 시뮬레이션을 안정적으로 표현할 수 있도록 한다.

  • PDF

Maximum concrete stress developed in unconfined flexural RC members

  • Ho, J.C.M.;Pam, H.J.;Peng, J.;Wong, Y.L.
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.207-227
    • /
    • 2011
  • In flexural strength design of unconfined reinforced concrete (RC) members, the concrete compressive stress-strain curve is scaled down from the uni-axial stress-strain curve such that the maximum concrete stress adopted in design is less than the uni-axial strength to account for the strain gradient effect. It has been found that the use of this smaller maximum concrete stress will underestimate the flexural strength of unconfined RC members although the safety factors for materials are taken as unity. Herein, in order to investigate the effect of strain gradient on the maximum concrete stress that can be developed in unconfined flexural RC members, several pairs of plain concrete (PC) and RC inverted T-shaped specimens were fabricated and tested under concentric and eccentric loads. From the test results, the maximum concrete stress developed in the eccentric specimens under strain gradient is determined by the modified concrete stress-strain curve obtained from the counterpart concentric specimens based on axial load and moment equilibriums. Based on that, a pair of equivalent rectangular concrete stress block parameters for the purpose of flexural strength design of unconfined RC members is determined.

Compressive behavior of concrete under high strain rates after freeze-thaw cycles

  • Chen, Xudong;Chen, Chen;Liu, Zhiheng;Lu, Jun;Fan, Xiangqian
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.209-217
    • /
    • 2018
  • The dynamic compressive behavior of concrete after freezing and thawing tests are investigated by using the split Hopkinson pressure bar (SHPB) technique. The stress-strain curves of concrete under dynamic loading are measured and analyzed. The setting numbers of freeze-thaw cycles are 0, 25, 50, and 75 cycles. Test results show that the dynamic strength decreases and peak strain increases with the increasing of freeze-thaw cycles. Based on the Weibull distribution model, statistical damage constitutive model for dynamic stress-strain response of concrete after freeze-thaw cycles was proposed. At last, the fragmentation test of concrete subjected to dynamic loading and freeze-thaw cycles is carried out using sieving statistics. The distributions of the fragment sizes are analyzed based on fractal theory. The fractal dimensions of concrete increase with the increasing of both freeze-thaw cycle and strain rate. The relations among the fractal dimension, strain rates and freeze-thawing cycles are developed.

Estimation Method of Local Elastic-Plastic Strain at Thinning Area of Straight Pipe Under Tension Loading (인장하중을 받는 직선 배관 감육부의 국부 탄소성 변형률 평가 방법)

  • An Joong-Hyok;Kim Yun-Jae;Yoon Kee-Bong;Ma Young-Wha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.533-542
    • /
    • 2006
  • In order to assess the integrity of pipes with local thinning area, the plastic strain as well as the elastic strain at the root of thinned region are required particularly when fluctuating load is applied to the pipe. For estimating elastic-plastic strain at local wall thinning area in a straight pipe under tensile load, an estimation model with idealized fully circumferential constant depth wall thinning area is proposed. Based on the compatibility and equilibrium equations a nonlinear estimation equation, from which local elastic-plastic strain can be determined as a function of pipe/defect geometry, material and the applied strain was derived. Estimation results are compared with those from detailed elastic-plastic finite element analysis, which shows good agreements. Noting that practical wall thinning in nuclear piping has not only a circular shape but also a finite circumferential length, the proposed solution for the ideal geometry is extended based on two-dimensional and three-dimensional numerical analysis of pipes with circular wall thinning.

Mathematical model for assessment of the safety of over three-span steel beams based on average strains from long gage optic sensor (평균변형률을 이용한 3경간 이상 연속 철골보의 안전성 평가 기법)

  • Jung Seong-Moon;Lee Hong-Min;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.159-166
    • /
    • 2006
  • Although the strain distribution along the length of a beam in buildings or infrastructures is non-uniform, most fiber optic sensors are point sensors that can measure the strain only at a local point of a beam. Long gage fiber optic sensors that measure integrated strain over a relatively long length can consider strain variation. This type of sensor was found to be efficient and useful for monitoring large-scale structures. On the other hand, the maximum strain or stress in a beam can not be measured with long gage optic sensors. However, for the assessment of the safety of multi-span steel beams subjected to various vertical loads, the maximum strain or stress measured during monitoring is required for comparison with the allowable stress of the beam calculated by a design code. Therefore, in this paper, mathematical models are presented for determination of the maximum values of strains in more three-span steel beams based on the average strains measured by long gage optic sensors.

  • PDF

Behavior of trabecular bone considered by fluid phase and strain rate (유체상과 변형율속도를 고려한 해면골의 거동해석)

  • 민성기;홍정화;문무성;이진희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1078-1080
    • /
    • 2002
  • The pressure variation of interstitial fluid is one of the most important factors in bone physiology. In order to understand the role of interstitial fluid and the biomechanical interactions between fluid and solid constituents within bone, poroelastic theory was applied. The purpose of this study is to describe the behavior of calf vertebral trabecular bone composed of the porous solid trabeculae and the viscous bone marrow by using a commercial finite element analysis program based on the poroelasticity. In this study, the model was numerically tested for 5 different strain rates, i. e., 0.001, 0.01, 0.1, 1.0, and 10 per second. The material properties of the calf vertebral trabecular bone were utilized from the previous experimental study. Two asymptotic poroelastic response, the drained and undrained deformation, were predicted. From the predicted results for the simulated five strain rate, it was found that the pore pressure generation has a linearly increasing behavior when the strain rate is the highest at 10 per second, other wise it showed a nonlinear the strain rate Increased. Based on the results of the present study, it was suggested that the calf vertebral trabecular bone could be modeled as a porous material and its strain rate dependent material behavior could be predicted.

  • PDF

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate (Zr계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동 연구)

  • Kim, Kyu-Sik;Kim, Ji-Sik;Hub, Hoon;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.500-507
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$(bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74GPa at strain rate $10^2s^{-1}$ and minimum strength was found to be 1.6GPa at $10^{-1}s^{-1}$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}s^{-1}$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate (Zr 계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동)

  • Kim, Kyu-Sik;Kim, Ji-Sik;Huh, Hoon;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.353-354
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$ (bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74Gpa at strain rate of $10^2/s$ and minimum strength was found to be 1.6GPa at $10^{-1}/s$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}/s$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

  • PDF

Aureivirga callyspongiae sp. nov., Isolated from Marine Sponge Callyspongia elegans

  • Park, So Hyun;Kim, Ji Young;Heo, Moon Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.3
    • /
    • pp.384-390
    • /
    • 2021
  • A Gram-negative, aerobic, motile by gliding, and rod-shaped marine bacterium, designated CE67T was isolated from the marine sponge Callyspongia elegans on Biyang-do in Jeju Island. The CE67T strain grew optimally at 25℃, pH 7.5, and in the presence of 2-3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain CE67T was related to the genus Aureivirga and had the highest 16S rRNA gene sequence similarity to the Aureivirga marina VIII.04T type strain (96.3%). The primary fatty acids (>10%) of strain CE67T were iso-C15:0 (35.3%) and iso-C17:0 3OH (21.8%). The polar lipid profile of strain CE67T contained phosphatidylethanolamine, unidentified aminolipids, and unidentified lipids. The predominant menaquinone was MK-6. The DNA G+C content was 29.1 mol%. Based on the polyphasic taxonomic analysis, strain CE67T was determined to be a representative novel species of the genus Aureivirga for which we propose the name Aureivirga callyspongiae sp. nov., whose strain type is CE67T (=KCTC 42847T=JCM 34566T).