• Title/Summary/Keyword: Strain-Rate

Search Result 3,162, Processing Time 0.03 seconds

A Study on the Microstructures and High Temperature Tensile Properties of Ni-base Superalloy Melt-Spun Ribbons (Ni 기 초합금 급냉응고 리본의 미세구조와 고온 인장특성에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.4
    • /
    • pp.180-184
    • /
    • 2014
  • In order to make clear relationship between high temperature tensile properties and fine microstructure of rapidly solidified cast-type Ni-base superalloys without heat treatment required for consolidation process, tensile test was carried out by changing strain rate from $5{\times}10^{-5}s^{-1}$ to $2{\times}10^{-2}s^{-1}$ and test temperature from $900^{\circ}C$ to $1050^{\circ}C$ using IN738LC and Rene'80 melt-spinning ribbons by twin roll process which were superior to ribbons by single roll process from the viewpoint of structure homogeneity. The dependence of tensile strength on strain rate and test temperature was studied and strain rate sensitivity, m, were estimated from tensile test results. From this study, it was found that tensile strength was influenced by ${\gamma}^{\prime}$ particle diameter, test temperature and strain rate, and m of ribbons exhibited above 0.3 over $950^{\circ}C$.

An Investigation of the Extinction and Ignition Characteristics Using a Flame-Controlling Method (화염온도 제어법을 이용한 확산화염의 소화 및 점화특성 검토)

  • Oh, Chang-Bo;Lee, Eui-Ju;Hwang, Cheol-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • Extinction and ignition characteristics of $CH_4$-air counterflow diffusion flame were numerically investigated using a Flame-Controlling Method(FCM). A skeletal reaction mechanism, which adopts 17 species and 58 reactions, was used in the simulation. The extinction and ignition conditions of the $CH_4$-air diffusion flames were investigated with varying the global strain rate. Upper and middle branches of S-curve for the peak temperature in the inverse of the global strain rate space were obtained with the FCM. The structures of diffusion flames in the upper and middle branches of S-curve were compared. It was found that the global strain rate was not correlated with the local strain rate well in the low global strain rate region. It is expected that the FCM is very useful to obtaining the extinction and ignition condition of diffusion flame, such as fires.

Elliptic Feature of Coherent Fine Scale Eddies in Turbulent Channel Flows

  • Kang Shin-Jeong;Tanahashi Mamoru;Miyauchi Toshio
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.262-270
    • /
    • 2006
  • Direct numerical simulations (DNS) of turbulent channel flows up to $Re_{\tau}=1270$ are performed to investigate an elliptic feature and strain rate field on cross sections of coherent fine scale eddies (CFSEs) in wall turbulence. From DNS results, the CFSEs are educed and the strain rate field around the eddy is analyzed statistically. The principal strain rates (i.e. eigenvalues of the strain rate tensor) at the CFSE centers are scaled by the Kolmogorov length $\eta$ and velocity $U_k$. The most expected maximum (stretching) and minimum (compressing) eigenvalues at the CFSE centers are independent of the Reynolds number in each $y^+$ region (i. e. near-wall, logarithmic and wake regions). The elliptic feature of the CFSE is observed in the distribution of phase-averaged azimuthal velocity on a plane perpendicular to the rotating axis of the CFSE $(\omega_c)$. Except near the wall, phase-averaged maximum $(\gamma^{\ast}/\gamma_c^{\ast})$ and minimum $(\alpha^{\ast}/\alpha_c^{\ast})$ an eigenvalues show maxima on the major axis around the CFSE and minima on the minor axis near the CFSE center. This results in high energy dissipation rate around the CFSE.

Axisymmetric Simulation of Nonpremixed Counterflow Flames - Effects of Global Strain Rate on Flame Structure - (비예혼합 대향류 화염의 축대칭 모사 - 변형률이 화염구조에 미치는 영향 -)

  • Park Woe-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.42-47
    • /
    • 2004
  • The axisymmetric methane-air counterflow flame in microgravity was simulated to investigate effects of the global strain rate on the flame structure. The flame shapes and profiles of temperature and the axial velocity for the mole fraction of methane in the methane-nitrogen fuel stream, Xm= 20, 50, $80\%$, and the global strain rate, ag= 20, 60, 90 $s^{-1}$ each mole fraction were compared. The profiles of the temperature and axial velocity of the axisymmetric simulations were in good agreement with those of OPPDIF, an one-dimensional flamelet code. It was confirmed that the flame is stretched more and the flame radius increases and the flame thickness decreases as the global strain rate increases.

  • PDF

A Study on the Resistance and Crack Propagation of ITO/PET Sheet with 20 nm Thick ITO Film (20 nm 두께의 ITO층이 코팅된 ITO/PET Sheet의 저항 및 균열형성 특성 연구)

  • Kim, Jin-Yeol;Hong, Sun-Ig
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.86-93
    • /
    • 2009
  • The crack formation and the resistance of ITO film on PET substrate with a thickness of 20 nm were investigated as a function of strain. The onset strain for the increase of resistance increased with increasing strain rate, suggesting the crack initiation is dependent on the strain rate. Electrical resistance increased at the strain of 1.6% at the strain rates below $10^{-4}/sec$ while it increased at ${\sim}2%$ at the strain rates above $10^{-3}/sec$. The critical strain at which the cracks were formed is close to the proportional limit. Upon loading, the initial cracks perpendicular to the tensile axis were observed and propagated the whole sample width with increasing strain. The spacing between horizontal cracks is thought to be determined by the fracture strength and the interfacial strength between ITO and PET. The crack density increased with increasing strain. However, the effect of the strain rate on the crack density was less pronounced in ITO/PET with 20 nm ITO thickness than ITO/PET with 125 nm ITO thickness, the strength of ITO film is thought to increase as the thickness on ITO film decreases. The absence of cracks on ITO film at a strain as close as 1.5% can be attributed to the compressive residual stress of ITO film which was developed during cooling after the coating process. The higher critical strain for the onset of the resistance increase and the crack initiation of ITO/PET with a thinner ITO film (20 nm) can be linked with the higher strength of the thinner ITO film.

Analysis of the dynamic confining effect of CRAC short column under monotonic loadings

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.351-363
    • /
    • 2020
  • Based on the dynamic tests of recycled aggregate concrete (RAC) short columns confined by the hoop reinforcement, the dynamic failure mechanism and the mechanical parameters related to the constitutive relation of confined recycled aggregate concrete (CRAC) were investigated thoroughly. The fracturing sections were relatively flat and smooth at higher strain rates rather than those at a quasi-static strain rate. With the increasing stirrup volume ratio, the crack mode is transited from splitting crack to slipping crack constrained with large transverse confinement. The compressive peak stress, peak strain, and ultimate strain increase with the increase of stirrup volume ratio, as well as the increasing strain rate. The dynamic confining increase factors of the compressive peak stress, peak strain, and ultimate strain increase by about 33%, 39%, and 103% when the volume ratio of hoop reinforcement is increased from 0 to 2%, but decrease by about 3.7%, 4.2%, and 9.1% when the stirrup spacing is increased from 20mm to 60mm, respectively. This sentence is rephrased as follows: When the stirrup volume ratios are up to 0.675%, and 2%, the contributions of the hoop confinement effect to the dynamic confining increase factors of the compressive peak strain and the compressive peak stress are greater than those of the strain rate effect, respectively. The dynamic confining increase factor (DCIF) models of the compressive peak stress, peak strain, and ultimate strain of CRAC are proposed in the paper. Through the confinement of the hoop reinforcement, the ductility of RAC, which is generally slightly lower than that of NAC, is significantly improved.

Dynamic Nonlinear Analysis Model for Reinforced Concrete Elements considering Strain Rate Effects under Repeated Loads (변형율속도를 고려한 반복하중을 받는 철근콘크리트 부재의 동적 비선형 해석모델)

  • 심종성;문일환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.78-83
    • /
    • 1990
  • The current analytical techniques for R/C elements under severe dynamic repeated loads, like earthquake or impact, has two major problems; one is that the effects of strain rate are not considered and the other one is the current model was developed based on flexural behavior only. Thus, this study develops a computer software that can idealize the flexural and shear behavior of R/C elements using several parameters and also can consider the effects of strain rate. The analytical results using the developed analytical technique were compared with several experimental results and were generally satisfied.

  • PDF

Flammability Limits Variation of Opposed Flow Diffusion Flames for Different Channel Gap (채널 간격에 따른 대향류 확산화염의 가연 영역의 변화)

  • Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.323-324
    • /
    • 2012
  • Flammability limits of opposed flow diffusion flame in a narrow channel was investigated experimentally and theoretically. There were three different extinction modes corresponding to high strain rate (HSR), low strain rate (LSR) and dilution ratio (DR) limits. To investigate these limits, a theoretical study was followed by focusing on flow and heat transfer characteristics. Consequently, a dead space concept that has been used for premixed flames was important to reveal the heat loss mechanism in a narrow channel especially for LSR conditions even in the case of diffusion flames.

  • PDF

Dynamic deformation behavior of rubber under high strain rate compressive loading (플라스틱 SHPB를 사용한 고무의 고변형률 하중하에서의 동적변형 거동)

  • 이억섭;김경준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.849-853
    • /
    • 2002
  • A specific experimental method, the split Hopkinson pressure bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 103/s~104/s. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from varying structures under dynamic loading are determined using a Split Hopkinson Pressure Bar technique.

  • PDF

Effect of Hydrocarbon Uptake Modes on Oil Degradation Rate by Mixed Cultures of Petroleum Degraders (Hydrocarbon Uptake Modes에 따른 유류분해 미생물 혼합체의 원유분해능)

  • 고성환;이홍금;김상진
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.606-614
    • /
    • 1998
  • In this study, biodegradation rate of Arabian light crude oil by mixed cultures of selected petroleum-degraders was determined. Their modes of hydrocarbon uptake were then observed to determine whether there are differences in biodegradation rate by the mixed cultures. By the mixed cultures of petroleum-degraders having same modes of hydrocarbon uptake, such as strain US1 and K1 (using pseudo-solubilized hydrocarbons by a biosurfactants), K2-2 and P1(using hydrocarbons by direct contact), CL 180 and IC-10 (mixed type of uptake modes), the biodegradation rates of aliphatics in the crude oil were increased more than those by their pure cultures, about 40%, 25% and 20%, respectively. Biodegradation rate of strain KH3-2 (using only water- dissolved hydrocarbons) was increased by mixed cultures with strain K1, CL180 or IC-10 possessing high emulsifying activity. However, the biodegradation rate of the crude oil was decreased about 20%-40% by the mixed cultures of petroleum-degraders having different mode of hydrocarbon uptake, such as addition of strain US1 or K1 in the cultures of K2-2 or P1. Biosurfactants produced by US1 or K1 seems to enhance the emulsification of crude oil in aqueous phase but inhibit the attachment of K2-2 or P1 to crude oil. As same phenomena, the addition to Triton X-100 into the culture of strain US1, K1, CL180, IC-10 or KH3-2 increased the biodegradation rate, but the addition in the culture of strain K2-2 or P1 decreased the biodegradation rate. The mixed culture made of CL180, IC-10 and KH3-2 degraded 61.5% of aliphatics and 69% of aromatics in 3% (v/v) of Arabian light crude oil added.

  • PDF