• Title/Summary/Keyword: Strain-Hardening Effect

Search Result 275, Processing Time 0.022 seconds

Fiber Distribution Characteristics and Flexural Performance of Extruded ECC Panel (압출성형 ECC 패널의 섬유분포 특성과 휨 성능)

  • Lee, Bang-Yeon;Han, Byung-Chan;Cho, Chang-Geun;Kwon, Young-Jin;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.573-580
    • /
    • 2009
  • This paper presents the mix composition, production method, and curing condition applied to the extruded ECC(Engineered Cementitious Composite) panel which are able to exhibit multiple cracking and potential pseudo strain-hardening behavior. In addition to the production technique of extruded ECC panel, the effect of fiber distribution characteristics, which are uniquely created by applying extrusion process, on the flexural behavior of the panel is also focussed. In order to demonstrate fiber distribution, a series of experiments and analyses, including image processing/analysis and micro-mechanical analysis, was performed. The optimum mix composition of extruded ECC panel was determined in terms of water matrix ratio, the amount of cement, ECC powder, and silica powder. It was found that flexural behavior of extruded ECC panel was highly affected by the slight difference in mix composition of ECC panel. This is mainly because the difference in mix composition results in the change of micro-mechanical properties as well as fiber distribution characteristics, represented by fiber dispersion and orientation. In terms of the average fiber orientation, the fiber distribution was found to be similar to the assumption of two dimensional random distribution, irrespective of mix composition. In contrast, the probability density function for fiber orientation was measured to be quite different depending on the mix composition.

Effect of Wear Environments on the High Stress Sliding Wear Behavior of Ni-base Deloro 50 Alloy (Ni계 Deloro 50합금의 고하중 Sliding 마모거동에 미치는 마모환경의 영향)

  • Choi, Jin-Ho;Choi, Se-Jong;Kim, Jun-Gi;Kim, Yong-Deog;Kim, Hak-Soo;Mun, Ju-Hyun;Baek, Ha-Chung;Lee, Duck-Hyun;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1115-1120
    • /
    • 1998
  • The sliding wear behavior of Ni-base hardfacing alloy, Deloro 50, was investigated at the contact stresses of 15ksi and 30ksi under the various wear environments. In air at room temperature, Deloro 50 showed lower wear resistance than Stellite 6 even at 15ksi due to the occurrence of severe adhesive wear. This seems to be caused by the lower hardness and work- hardening rate of Deloro 50 than those of Stellite 6. In water at room temperature, Deloro 50 showed as good wear resistance as Stellite 6 at 15ksi. It was considered to be due to that water could effectively prevent metal to metal contact through contacting asperities. However, Deloro 50 showed severe adhesive wear at 30ksi in water at room temperature. It seems to be that the water could not suppress adhesion wear at 30ksi. At $300^{\circ}C$ in air, Deloro 50 exhibited higher wear resistance than Stellite 6 even at 30ksi. It was considered that the oxide glaze layers formed on wear surface during sliding, effectively prevented direct metal-to-metal contacts.

  • PDF

Implicit Numerical Integration of Two-surface Plasticity Model for Coarse-grained Soils (Implicit 수치적분 방법을 이용한 조립토에 관한 구성방정식의 수행)

  • Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.45-59
    • /
    • 2006
  • The successful performance of any numerical geotechnical simulation depends on the accuracy and efficiency of the numerical implementation of constitutive model used to simulate the stress-strain (constitutive) response of the soil. The corner stone of the numerical implementation of constitutive models is the numerical integration of the incremental form of soil-plasticity constitutive equations over a discrete sequence of time steps. In this paper a well known two-surface soil plasticity model is implemented using a generalized implicit return mapping algorithm to arbitrary convex yield surfaces referred to as the Closest-Point-Projection method (CPPM). The two-surface model describes the nonlinear behavior of coarse-grained materials by incorporating a bounding surface concept together with isotropic and kinematic hardening as well as fabric formulation to account for the effect of fabric formation on the unloading response. In the course of investigating the performance of the CPPM integration method, it is proven that the algorithm is an accurate, robust, and efficient integration technique useful in finite element contexts. It is also shown that the algorithm produces a consistent tangent operator $\frac{d\sigma}{d\varepsilon}$ during the iterative process with quadratic convergence rate of the global iteration process.

Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation

  • Mohammad Saeed, Amini;Vahab, Sarfarazi;Kaveh, Asgari;Xiao, Wang;Mojtaba Moheb, Hoori
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2023
  • Man-made structure materials like concrete usually contain inclusions. These inclusions affect the mechanical properties of concrete. In this investigation, the influence of inclusion length and inclination angle on three-dimensional failure mechanism of concrete under uniaxial compression were performed using experimental test and numerical simulation. Approach of acoustic emission were jointly used to analyze the damage and fracture process. Besides, by combining the stress-strain behavior, quantitative determination of the thresholds of crack stress were done. concrete specimens with dimensions of 120 mm × 150 mm × 100 mm were provided. One and two holes filled by gypsum are incorporated in concrete samples. To build the inclusion, firstly cylinder steel tube was pre-inserting into the concrete and removing them after the initial hardening of the specimen. Secondly, the gypsum was poured into the holes. Tensile strengths of concrete and gypsum were 2.45 MPa and 1.5 MPa, respectively. The angle bertween inclusions and axial loadind ary from 0 to 90 with increases of 30. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Diameter of the hole was 20 mm. Entirely 20 various models were examined under uniaxial test. Simultaneous with experimental tests, numerical simulation (Particle flow code in two dimension) were carried out on the numerical models containing the inclusions. The numerical model were calibrated firstly by experimental outputs and then failure behavior of models containing inclusions have been investigated. The angle bertween inclusions and axial loadind vary from 0 to 90 with increases of 15. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Entirely 32 various models were examined under uniaxial test. Loading rate was 0.05 mm/sec. The results indicated that when inclusion has occupied 100% of sample thickness, two tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusion has occupied 75% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusions have occupied 50% and 25% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. Also the inclusion was failed by one tensile crack. The compressive strength of samples decease with the decreases of the inclusions length, and inclusion angle had some effects on that. Failure of concrete is mostly due to the tensile crack. The behavior of crack, was affected by the inclusion length and inclusion number.

Experimental Studies on the Properties of Epoxy Resin Mortars (에폭시 수지 모르터의 특성에 관한 실험적 연구)

  • 연규석;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.1
    • /
    • pp.52-72
    • /
    • 1984
  • This study was performed to obtain the basic data which can be applied to the use of epoxy resin mortars. The data was based on the properties of epoxy resin mortars depending upon various mixing ratios to compare those of cement mortar. The resin which was used at this experiment was Epi-Bis type epoxy resin which is extensively being used as concrete structures. In the case of epoxy resin mortar, mixing ratios of resin to fine aggregate were 1: 2, 1: 4, 1: 6, 1: 8, 1:10, 1 :12 and 1:14, but the ratio of cement to fine aggregate in cement mortar was 1 : 2.5. The results obtained are summarized as follows; 1.When the mixing ratio was 1: 6, the highest density was 2.01 g/cm$^3$, being lower than 2.13 g/cm$^3$ of that of cement mortar. 2.According to the water absorption and water permeability test, the watertightness was shown very high at the mixing ratios of 1: 2, 1: 4 and 1: 6. But then the mixing ratio was less than 1 : 6, the watertightness considerably decreased. By this result, it was regarded that optimum mixing ratio of epoxy resin mortar for watertight structures should be richer mixing ratio than 1: 6. 3.The hardening shrinkage was large as the mixing ratio became leaner, but the values were remarkably small as compared with cement mortar. And the influence of dryness and moisture was exerted little at richer mixing ratio than 1: 6, but its effect was obvious at the lean mixing ratio, 1: 8, 1:10,1:12 and 1:14. It was confirmed that the optimum mixing ratio for concrete structures which would be influenced by the repeated dryness and moisture should be rich mixing ratio higher than 1: 6. 4.The compressive, bending and splitting tensile strenghs were observed very high, even the value at the mixing ratio of 1:14 was higher than that of cement mortar. It showed that epoxy resin mortar especially was to have high strength in bending and splitting tensile strength. Also, the initial strength within 24 hours gave rise to high value. Thus it was clear that epoxy resin was rapid hardening material. The multiple regression equations of strength were computed depending on a function of mixing ratios and curing times. 5.The elastic moduli derived from the compressive stress-strain curve were slightly smaller than the value of cement mortar, and the toughness of epoxy resin mortar was larger than that of cement mortar. 6.The impact resistance was strong compared with cement mortar at all mixing ratios. Especially, bending impact strength by the square pillar specimens was higher than the impact resistance of flat specimens or cylinderic specimens. 7.The Brinell hardness was relatively larger than that of cement mortar, but it gradually decreased with the decline of mixing ratio, and Brinell hardness at mixing ratio of 1 :14 was much the same as cement mortar. 8.The abrasion rate of epoxy resin mortar at all mixing ratio, when Losangeles abation testing machine revolved 500 times, was very low. Even mixing ratio of 1 :14 was no more than 31.41%, which was less than critical abrasion rate 40% of coarse aggregate for cement concrete. Consequently, the abrasion rate of epoxy resin mortar was superior to cement mortar, and the relation between abrasion rate and Brinell hardness was highly significant as exponential curve. 9.The highest bond strength of epoxy resin mortar was 12.9 kg/cm$^2$ at the mixing ratio of 1:2. The failure of bonded flat steel specimens occurred on the part of epoxy resin mortar at the mixing ratio of 1: 2 and 1: 4, and that of bonded cement concrete specimens was fond on the part of combained concrete at the mixing ratio of 1 : 2 ,1: 4 and 1: 6. It was confirmed that the optimum mixing ratio for bonding of steel plate, and of cement concrete should be rich mixing ratio above 1 : 4 and 1 : 6 respectively. 10.The variations of color tone by heating began to take place at about 60˚C, and the ultimate change occurred at 120˚C. The compressive, bending and splitting tensile strengths increased with rising temperature up to 80˚ C, but these rapidly decreased when temperature was above 800 C. Accordingly, it was evident that the resistance temperature of epoxy resin mortar was about 80˚C which was generally considered lower than that of the other concrete materials. But it is likely that there is no problem in epoxy resin mortar when used for unnecessary materials of high temperature resistance. The multiple regression equations of strength were computed depending on a function of mixing ratios and heating temperatures. 11.The susceptibility to chemical attack of cement mortar was easily affected by inorganic and organic acid. and that of epoxy resin mortar with mixing ratio of 1: 4 was of great resistance. On the other hand, when mixing ratio was lower than 1 : 8 epoxy resin mortar had very poor resistance, especially being poor resistant to organicacid. Therefore, for the structures requiring chemical resistance optimum mixing of epoxy resin mortar should be rich mixing ratio higher than 1: 4.

  • PDF