• 제목/요약/키워드: Strain ratio

검색결과 2,184건 처리시간 0.027초

Uniaxial Compression Behavior of High-Strength Concrete Confined by Low-Volumetric Ratio Lateral Ties

  • Hong Ki-Nam;Han Sang-Hoon
    • 콘크리트학회논문집
    • /
    • 제17권5호
    • /
    • pp.843-852
    • /
    • 2005
  • Presently, test results and stress-strain models for poorly confined high-strength columns, more specifically for columns with a tie volumetric ratio smaller than $2.0\%$, are scarce. This paper presents test results loaded in axial direction for square reinforced concrete columns confined by various volumetric ratio lateral ties including low-volumetric ratio. Test variables include concrete compressive strength, tie yield strength, tie arrangement type, and tie volumetric ratio. Local strains measured using strain gages bonded to an acryl rod. For square RC columns confined by lateral ties, the confinement effect was efficiently improved by changing tie arrangement type from Type-A to Type-B. A method to compute the stress in lateral ties at the concrete peak strength and a new stress-strain model for the confined concrete are proposed. Over a wide range of confinement parameters, the model shows good agreement with stress-strain relationships established experimentally.

Lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression

  • Hou, Chongchi;Zheng, Wenzhong
    • Structural Engineering and Mechanics
    • /
    • 제84권2호
    • /
    • pp.239-251
    • /
    • 2022
  • The use of lateral reinforcement in confined concrete columns can improve bearing capacity and deformability. The lateral responses of lateral reinforcement significantly influence the effective confining pressure on core concrete. However, lateral strain-axial strain model of concrete columns confined by lateral reinforcement has not received enough attention. In this paper, based on experimental results of 85 concrete columns confined by lateral reinforcement under axial compression, the effect of unconfined concrete compressive strength, volumetric ratio, lateral reinforcement yield strength, and confinement type on lateral strain-axial strain curves was investigated. Through parameter analysis, it indicated that with the same level of axial strain, the lateral strain slightly increased with the increase in the unconfined concrete compressive strength, but decreased with the increase in volumetric ratio significantly. The lateral reinforcement yield strength had slight influence on lateral strain-axial strain curves. At the same level of lateral strain, the axial strain of specimen with spiral was larger than that of specimen with stirrup. Furthermore, a lateral strain-axial strain model for concrete columns confined by lateral reinforcement under axial compression was proposed by introducing the effects of unconfined concrete compressive strength, volumetric ratio, confinement type and effective confining pressure, which showed good agreement with the experimental results.

THE EFFECT OF MONOMER TO POWDER RATIO ON POLYMERIZATION SHRINKAGE-STRAIN KINETICS OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Kim, Sung-Hun
    • 대한치과보철학회지
    • /
    • 제45권6호
    • /
    • pp.735-742
    • /
    • 2007
  • Statement of problem. Although a number of previous investigations have been carried out on the polymerization shrinkage-strain kinetics of provisional crown and fixed partial denture (FPD) materials, the effect of the changes of liquid monomer to powder ratio on its polymerization shrinkage-strain kinetics has not been reported. Purpose. The purpose of this study was to investigate the influence of liquid monomer to powder ratio of polymer-based provisional crown and FPD materials on the polymerization shrinkage-strain kinetics. Material and methods. Chemically activated acrylic provisional materials (Alike, Jet, Snap) were investigated. Each material was mixed with different liquid monomer to powder ratios by volume (1.0:3.0, 1.0:2.5, 1.0:2.0, 1.0:1.5, 1.0:1.0). Time dependent polymerization shrinkage- strain kinetics of all materials was measured by the bonded-disk method as a function of time at $23^{\circ}C$. Five recordings were taken for each ratio. The results were statistically analyzed using one-way ANOVA and the multiple comparison Scheffe test at the significance level of 0.05. Trends were also examined by linear regression. Results. At 5 minutes after mixing, the polymerization shrinkage-strains of all materials ranged from only 0.01% to 0.49%. At 10 minutes, the shrinkage-strain of Alike was the highest, 3.45% (liquid monomer to powder ratio=1.0:3.0). Jet and Snap were 2.69% (1.0:2.0) and 1.58% (1.0:3.0), respectively (P>0.05). Most shrinkage (94.3%-96.5%) occurred at 30 minutes after mixing for liquid monomer to powder ratio, ranging from 1.0:3.0 to 1.0:1.0. The highest polymerization shrinkage-strain values were observed for the liquid monomer to powder ratio of 1.0:3.0. At 120 minutes after mixing, the shrinkage-strain values were 4.67%, 4.18%, and 3.07% for Jet, Alike, and Snap, respectively. As the liquid monomer to powder ratio increased, the shrinkage-strain values tend to be decreased linearly (r=-0.769 for Alike, -0.717 for Jet, -0.435 for Snap, $r^2=0.592$ for Alike, 0.515 for Jet, 0.189 for Snap; P<0.05). Conclusion. The increase of the liquid monomer to powder ratio from 1.0:3.0 to 1.0:1.0 had a significant effect on the shrinkage-strain kinetics of polymer-based crown and FPD materials investigated. This increased the working time and decreased the shrinkage-strain during polymerization.

각 종 모래의 Stress-dilatancy 관계에 관한 연구 (A Study of a Variety of Sands in Stress-dilatancy Relationships)

  • 박춘식;장정욱
    • 한국지반공학회논문집
    • /
    • 제18권1호
    • /
    • pp.41-48
    • /
    • 2002
  • 공중낙하법에 의해 만든 등방압밀 모래공시 체를 미소변형률 측정장치를 사용한 평면변형률압축시험을 실시하여 미소변형률에서 파괴후까지의 응력-다이레이턴시(stress-dilatancy) 관계를 연구하였다. 세계 각국의 주요 연구기관에서 사용되고 있는 7종류의 연구용 표준사 공시체를 멤브레인의 관입에 의한 오차와 변위를 외부에서 측정함으로 하여 생기는 오차(bedding error) 등의 영향을 제거하여 측정한 최대주응력방향의 변형률과 최소주응력방향의 변형률을 각각 0.0001%에서 파괴 시까지의 응력-변형률 관계를 얻었다. 그 결과 미소변형률 수준에서 파괴 시가지의 주응력비-주변헝률증분비 관계는 과압밀비 및 구속압에 거의 영향을 받지 않고 동일하였다. 또한 미소변형률에서는 이방성이 주응력비-주변형률증분비 관계에 미치는 영향은 거의 없지만, 파괴 부근에서의 K값의 크기는 $\delta$에 따라 다른 값을 나타내었다. 한편, K값은 모래의 종류에 따라 다른 값을 나타내었다. 전체적으로 Rowe의 응력-다이레이턴시식은 미소변형를에서 파괴까지 근사적으로 성립한다는 것을 알았다.

강판의 두께 깊이와 소성변형비 변화 (The Variation of Plastic Strain Ratio Through Thickness in Sheet Steel)

  • 김인수;박노진;김성진;서완영;이민구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.117-120
    • /
    • 1997
  • Microstructure and pole figure through thickness in cold rolled sheet steel were investigated. The calculated plastic strain ratio in surface is greatly different with that in center layer and measured value in tensile test.

  • PDF

연속재하 압밀시험에서 적정 간극수압비에 관한 연구 (A Study on the Proper Pore pressure ratio in Continuous Loading Consolidation tests)

  • 채점식;이송
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.271-276
    • /
    • 2002
  • Continuous loading is applied the sample has been developed to overcome some of the problems associated with the incremental loading consolidation test. Therefore, it is able to reduce the test time and provide a well defined the curve of effective stress versus strain due to continuous stress-strain points. Also, the constant rate of strain consolidation(CRSC) test has been accepted widely as a standard method in foreign countries because of its many advantages. However, in Korea the CRSC test has not been used in engineering practice and experimentally verified. Because there is not a precise criterion of testing despite consolidation characteristics are influenced on strain rate and Pore pressure ratio. Consequently, it is difficult to apply in engineering practice. In this study, artificial neural networks are applied to the estimation of th proper strain rate and pore pressure ratio of the CRSC test. This study shows the possibility of utilizing the artificial neural networks model of estimation of the strain rate and pore pressure ratio in the CRSC test.

  • PDF

비대칭 압연 알루미늄의 소성변형비 (Plastic Strain Ratios of Asymmetry Rolled Aluminum Sheets)

  • 사이드무로드 아크라모프;김인수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.425-426
    • /
    • 2007
  • The physical and mechanical properties of the sheets metals are closely related to the presence of preferred crystallographic orientations which were produced by the manufacturing process. To obtain the aluminum alloys sheets with good Al sheet formability, the plastic strain ratio (or r-value) of AA1050 Al sheets after asymmetric rolling and subsequent heat treatment was studied. The AA1050 aluminum alloy sheets after asymmetric rolling with high reduction ratio and following heat treatment had the higher plastic strain ratio.

  • PDF

Anisotropy in Gum and Black Filled SBR and NR Vulcanizates Due to Large Deformation

  • Park, Byung-Ho;G.R. Hamed
    • Macromolecular Research
    • /
    • 제8권6호
    • /
    • pp.268-275
    • /
    • 2000
  • After imposing a large pre-strain, anisotropy increases with increasing residual extension ratio. Gums have very low residual extension ratio and exhibit little anisotropy, while black filled SBR and especially sulfur-cured carbon black filled NR have large set and anisotropy. For carbon black filled rubber, samples subjected to tensile loading in perpendicular to the pre-strain direction have the same stress-strain curves shape as the sample without pre-strain (=isotropic samples), but slightly lower modulus. However, compared to isotropic or perpendicular directional samples to pre-strain direction, samples subjected to tensile loading in parallel to the pre-strain direction show low stress at low deformation, but have high stiffness at high deformation. Normalized anisotropy changes with strain. The normalized anisotropy for various deformations is a linear function of residual extension ratio.

  • PDF

강관 내무보강 중공교각의 연성도 평가 (Ducti1ity, Evaluation of Circular Reinforced Concrete Piers with an Internal Steel Tube)

  • 강영종;최진유;김도연;한택희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.241-248
    • /
    • 2001
  • The ductility of circular hollow reinforced concrete columns with one layer of longitudinal and spiral reinforcement placed near the outside face of the section and the steel tube placed on the inside face of the section is investigated. Such hollow sections are confined through the wall thickness since the steel tube is placed. The results of analytical moment-curvature analyses for such hollow sections are compared with those for the circular section with the sane diameter. In this study, moment-curvature analyses are conducted with Mandel's confined concrete stress-strain relationship in which the effect of confinement is to increase the compression strength and ultimate strain of concrete. The moment-curvature analyses confirmed that the ductility is primarily influenced on the ultimate strain. The variables influenced on the ultimate strain is the ratio and yield strength of confining reinforcement and the compression strength for confined concrete. From this ultimate strain - the transverse reinforcement ratio relationship, the transverse reinforcement ratio for circular hollow reinforced columns with confinement is proposed. The proposed transverse reinforcement ratio is confirmed by experimental results.

  • PDF

산화제의 산소농도에 따른 메소 스케일 대향류 저신장율 화염의 소멸특성 (Low Strain Rate Flame Extinction Characteristics of Opposed Flow Flame in a Mesoscale Channel with Variation of Oxygen Ratio)

  • 최용운;이민정;정용진;김남일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.143-145
    • /
    • 2015
  • A mesoscale channel was designed to observe the flame stabilization at low strain rate conditions (< $10s^{-1}$). At this condition, the behavior of partially premixed flame was explored by changing a channel size and the oxygen ratio in the oxidant. In this work, experiment is conducted for propane case and it was compared with methane case of previous one. Conclusively, it can be observed that the strain rate of flame extinction and starting point of oscillation were varied with oxygen ratio. Moreover we can understand the effects of enhanced oxygen ratio of oxidant and flame behavior at low strain rate conditions.

  • PDF