• Title/Summary/Keyword: Strain path method

Search Result 79, Processing Time 0.022 seconds

Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Arabi, E.
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.389-401
    • /
    • 2018
  • An isoparametric six-node triangular element is utilized for geometrically nonlinear analysis of functionally graded (FG) shells. To overcome the shear and membrane locking, the element is improved by using strain interpolation functions. The Total Lagrangian formulation is employed to include the large displacements and rotations. Finding the nonlinear behavior of FG shells via laminated modeling is also the goal. A power function is employed to formulate the variation of elastic modulus through the thickness of shells. The results are presented in two ways, including the general FGM formulation and the laminated modeling. The equilibrium path is obtained by using the Generalized Displacement Control Method. Some popular benchmarks, including hyperbolical shell structures are solved to declare the correctness and accuracy of proposed formulations.

Nonlinear Analysis of RC Structures using Assumed Strain RM Shell Element

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • Nonlinear analysis of reinforced concrete structures is carried out by using Reissner-Mindlin (RM) shell finite element (FE). The brittle inelastic characteristic of concrete material is represented by using the elasto-plastic fracture (EPF) material model with the relevant material models such as cracking criteria, shear transfer model and tension stiffening model. In particular, assumed strains are introduced in the formulation of the present shell FE in order to avoid element deficiencies inherited in the standard RM shell FE. The arc-length control method is used to trace the full load-displacement path of reinforced concrete structures. Finally, four benchmark tests are carried out and numerical results are provided as future reference solutions produced by RM shell element with assumed strains.

Development of Flow Forming Process for Hollow Shaped Parts from Seamless Steel Tube (유동성형을 이용한 중공형 부품 제조공정 개발)

  • Kwon, Y.N.;Kim, S.W.;Kim, B.J.;Park, E.S.;Cha, D.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.611-618
    • /
    • 2011
  • Flow forming is an incremental forming process in which rollers are used to form cylindrical parts with repeated turning of both roller and starting material. Both sheet and tube can be used as the starting material. The process is highly useful for producing hollow shaped parts from a tube, with the benefit of the average strain in the final shape being significantly lower than that from a sheet material. In the present study, the flow forming process was studied and optimized for producing a hollow shaped part from seamless steel tube by both experiment and numerical analysis. Upon considering the difficulty of forming seamless steel sheet, the thickness reduction was distributed over several tool paths. In the end, an optimum process condition was attained, and the experiment verified the simulation results.

Numerical Analysis of J-integral Value in the Rectangular Plate with a Crack (균열(龜裂)을 가진 사각평판(四角平板)의 수치해법(數値解法)에 의(依)한 J-적분치(積分値))

  • D.S.,Kim;J.E.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.35-42
    • /
    • 1984
  • A line integral is exhibited which has the same value for all paths surrounding the tip of crack in a two dimensional strain field of elastic-plasticc material. Finite element method was used to determine Rice's J-integral value in centrally cracked plate. These numerical J-integral values were compared with corresponding values of reference with low hardening and high yield strength. The J-integral value was also computed for a crack extension and different load condition. For increasing crack length the value of J-integral also increases, this means that the crack is unstable. To prove path independent, three paths were used in the analysis and proved.

  • PDF

Deformation Characteristics in Sheet Metal Forming with Small Ball (소형 구를 이용한 박판 성형에서의 변형특성)

  • 심명섭;박종진
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2001
  • Recently, the technology of incremental forming for sheet metal components has drawn attention for small-batch productions. In the present investigation, a forming tool containing a freely-rotating ball was developed and applied to forming of various shapes with full annealed Al 1050 sheet. Deformation characteristics occurring during forming with this tool was examined through FEM analysis and grid measurement. It was found that deformation modes developed along a straight path and around a corner are close to those of plane-strain and equi-biaxial stretching, respectively, and that cracks occur mostly at corners for the same depth of tool. FEM analysis was successfully applied to this special type of forming process and provided comparable results to the measurements from experiment.

  • PDF

Family Resiliency Facto for the Adaptation of Family who have a Congenital Heart Disease (선천성 심장 질환 아동 가족의 복원 요인이 적응에 미치는 영향)

  • Tak Young-Ran;Yun E-Hwa;An Ji-Yeon;Kim Sang-Hwa
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.7
    • /
    • pp.1298-1306
    • /
    • 2004
  • Purpose: The purpose of this study was to explore the relationships of family strain, perceived social support, family hardiness, and family adaptation and identify the family resiliency factors for the adaptation of families who have a child with congenital heart disease. Method: The sample consisted of 90 families who had a child diagnosed with congenital heart disease and completed surgical treatment. Data was collected from parents using a questionnaire. Results: Results from path analyses revealed that family strain had a direct effect on both perceived social support and family hardiness, and an indirect effect on family adaptation. Also, the findings revealed that perceived social support had a direct effect on both family hardiness and family adaptation, and family hardiness had a direct effect on family adaptation. Thus, these results indicated that perceived social support and family hardiness had a mediating effect on family strain. Conclusion: Findings provide the evidence for the theoretical and empirical significance of perceived social support and family hardiness as family resiliency factors for family adaptation. Clinical implications of these findings might be discussed in terms of family-centered nursing interventions for the families who have a child with congenital heart disease based on an understanding of family resiliency for adaptation.

Characteristic of stress and strain of soft ground applied individual vacuum pressure (개별진공압이 적용된 연약지반의 응력과 변형 특성)

  • Ahn, Dong-Wook;Han, Sang-Jae;Kim, Byung-Il;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.467-472
    • /
    • 2010
  • Individual vacuum pressure method is soft ground improvement technique, in which a vacuum pressure can be directly applied to the vertical drain board to promote consolidation and strengthening the soft ground. This method does not require a surcharge load, different to embankment or pre-loading method. In this study, given the inner displacement of the ground where the individual vacuum pressure is applied, this dissertation aimed to reproduce the state of stress in the ground that is subject to the constraints created by the depth of improvement area. Modified Cam Clay theory which made it possible to take into account the isotropic displacement of the ground was applied to the NAP-IVP used simulation; the conception of equivalent permeability proposed by Hird was also applied so that the 3-dimensional real construction effect of drain materials could be reflected in the analysis.

  • PDF

Three dimensional multi-step inverse analysis for optimum design of initial blank in sheet metal forming (박판금속성형의 초기 블랭크 최적설계를 위한 삼차원 다단계 역해석)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2055-2067
    • /
    • 1997
  • Values of process parameters in sheet metal forming can be estimated by various one-step inverse methods. One-step inverse methods based on deformation theory, however, cause some amount of error. The amount of error is generally increased as the deformation path becomes more complex. As a remedy, a new three dimensional multi-step inverse method is introduced for optimum design of blank shapes and strain distributions from desired final shapes. The approach extends a one-step inverse method to a multi-step inverse method in order to reduce the amount of error. The algorithm developed is applied to square cup drawing to confirm its validity by demonstrating reasonably accurate numerical results. Rapid calculation with this algorithm enables easy determination of an initial blank of sheet metal forming.

A Critical Liquefaction Resistible Characteristic of Saturated Sands Based on the Cyclic Triaxial Test Under Sinusoidal Loadings (정현하중재하 진동삼축시험에 기초한 포화사질토의 액상화 한계저항특성)

  • 최재순;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.147-158
    • /
    • 2004
  • Laboratory dynamic tests are carried out to assess the liquefaction potential of saturated sands in most countries. However, simple results such as the maximum cyclic shear stress and the number of cycles at initial liquefaction are used in the experimental assessment of liquefaction potential, even though various results can be obtained from the dynamic test. In addition, it seemed to be inefficient because more than three dynamic tests with different stress ratio have to be carried out to draw a liquefaction resistance experimental curve. To improve the present assessment method fur liquefaction potential, a new critical resistible characteristic far soil liquefaction is proposed and verified through conventional cyclic triaxial tests with Jumunjin sand. In the proposed method, various experimental data such as effective stress path, stress-strain relationship, and the change of excess pore water pressure can be used in the determination of cumulative plastic shear strains at every 1/4 cycle. Especially, the critical cumulative plastic shear strain to initiate liquefaction can be defined in a specific point called a phase change point in the effective stress path and it can be calculated from a hysteric curve of stress-strain relationship up to this point. Through this research, it is found that the proposed cumulative plastic shear strain can express the dissipated energy to resist dynamic loads and consider the realistic soil dynamic behavior of saturated sands reasonably. It is also found that the critical plastic shear strain can be used as a registible index of soils to represent the critical soil dynamic state, because it seems to include no effect of large deformation.

피에조 콘 소산시험을 이용한 압밀계수 추정시 이론해의 선택 및 현장지반의 압밀도 평가

  • 이승래;김영상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.04a
    • /
    • pp.37-46
    • /
    • 1998
  • Several researchers have developed a number of theoretical time factors to determine the coefficient of consolidation by biezocone excess pore water dissipation test in soft clay deposits. However, depending on the assumptions and analytical techniques, the estimated coefficient of consolidation could be in a considerably wide range even for a specific degree of consolidation. These solutions are obtained from an initial excess porewater pressure distribution which can be determined from. either the cavity expansion theory or the strain path method. The 야ssipation of the initial excess porelvater pressure has been usally simulated by means of linear-uncoupled consolidation analysis and then the dissipation curve is normalized by the initial excess porewater pressure for easy use. However. since there is no guidelines or rules on which method gives the best solution for obtaining the coefficient of consolidation from the dissipation curve, the final selection was only based on engineer's extrience and Judgements. Thus, such an arbitrary selection might be inappropriate for a specific site to characterize the consolidation behavior. In this paper, we reviewed various theoretical time factors and, based on this consideration, we mentioned needs for researches in selecting a specific solution that is compatible for Korean clays. Also we listed some source of errors that can be encountered in the procedure of dissipation analysis.

  • PDF