• 제목/요약/키워드: Strain modulus ($E_v$

검색결과 16건 처리시간 0.021초

지반반력계수$(K_{30})$와 변형률계수$(E_v)$에 대한 고찰 (Study on the subgrade reaction modulus$(K_{30})$ and strain modulus$(E_v)$)

  • 김대상;최찬용;김성중;유진영;양신추
    • 한국철도학회논문집
    • /
    • 제10권3호
    • /
    • pp.264-270
    • /
    • 2007
  • Two modulus, strain modulus $(E_v)$ and subgrade reaction modulus $(K_{30})$ are being used as a standard for bearing stiffness in Korea Railroad design. The first is used in Europe and the other is used in Japan. The methodologies to obtain the two modulus are similar in using plate. But testing methods are different in loading to plate. Therefore, according to soil strain range, there should be large gap in not only computations of deformation modulus but also the necessary time to test. At first, this paper focuses on the two kinds of test methods to evaluate bearing stiffness. Secondly, based on elastic theory, the theory to obtain the two coefficients are studied thoroughly. Finally, the correlations between the two coefficients were analyzed and evaluated based on the field test results more than 38 places. The matching values for subgrade and ground between $K_{30}$ and $E_{v2}$ are proposed with the consideration of the proposed strain reduction factor (1.5 for subgrade and 3 for ground) and safety factor, respectively.

Evaluation of Dynamic Properties of Trackbed Foundation Soil Using Mid-size Resonant Column Test

  • Lim, Yujin;Nguyen, Tien Hue;Lee, Seong Hyeok;Lee, Jin-Wook
    • International Journal of Railway
    • /
    • 제6권3호
    • /
    • pp.112-119
    • /
    • 2013
  • A mid-size RC test apparatus (MRCA) equipped with a program is developed that can test samples up to D=10 cm diameter and H=20 cm height which are larger than usual samples used in practice. Using the developed RC test apparatus, two types of crushed trackbed foundation materials were tested in order to get the shear modulus reduction curves of the materials with changing of shear strain levels. For comparison purpose, large repetitive triaxial compression tests (LRT) with samples of height H=60cm and diameter D=30 cm were performed also. Resilient modulus obtained from the LRT was converted to shear modulus by considering elastic theory and strain level conversion and were compared to shear modulus values from the MRCA. It is found from this study that the MRCA can be used to test the trackbed foundation materials properly. It is found also that strain levels of $E_{v2}$ mostly used in the field should be verified considering the shear modulus reduction curves and proper values of $E_{v2}$ of trackbed foundation must be used considering the strain level verified.

Strain-dependent-deformation property of Gyeongju compacted bentonite buffer material for engineered barrier system

  • Ivan Jeff Navea;Jebie Balagosa;Seok Yoon;Yun Wook Choo
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1854-1862
    • /
    • 2024
  • This study aims to investigate the strain-dependent-deformation property of Gyeongju bentonite buffer material. A series of unconfined compressive tests were performed with cylindrical specimens prepared at varying dry densities (𝜌d = 1.58 g/cm3 to 1.74 g/cm3) using cold isostatic pressing technique. It is found that as 𝜌d increase, the unconfined compressive strength (qu), failure strain, and elastic modulus (E) of Gyeongju compacted bentonite (GCB) increases. Normalized elastic modulus (Esec/Emax) degradation curves of GCB specimens are fitted using Ramberg-Osgood model and the elastic threshold strain (𝜀e,th) is determined through the fitted curves. The strain-dependency of E and Poisson's ratio (v) of GCB were observed. E and v were measured constant below 𝜀e,th of 0.14 %. Then, E decreases while v increases after exceeding the strain threshold. The Esec/Emax degradation curves of GCB in this study suggests wider linear range and higher linearity than those of sedimentary clay in previous study. On top of that, the influence of 𝜌d is observed on Esec/Emax degradation curves of GCB, showing a slight increase in 𝜀e,th with increase in 𝜌d. Furthermore, an empirical model of qu with 𝜌d and a correlation model between qu and E are proposed for Gyeongju bentonite buffer materials.

기판 Etching 기법을 이용한 DLC 필름의 탄성특성 평가 (Evaluation of Elastic Properties of DLC Films Using Substrate Etching Techniques)

  • 조성진;이광렬;은광용;한준희;고대홍
    • 한국세라믹학회지
    • /
    • 제35권8호
    • /
    • pp.813-818
    • /
    • 1998
  • A simple method to measure the elastic modulus E and Poisson's ratio v of diamod-like carbon (DLC) films deposited on Si wafer was suggested. Using the anisotropic etching technique of Si we could make the edge of DLC overhang free from constraint of Si substrate. DLC film is chemically so inert that we could not on-serve any surface damage after the etching process. The edge of DLC overhang free from constraint of Si substrate exhibited periodic sinusoidal shape. By measuring the amplitude and the wavelength of the sinu-soidal edge we could determine the stain of the film required to adhere to the substrate. Since the residual stress of film can be determine independently by measurement of the curvature of film-substrate com-posite we could calculated the biaxial elastic modulus E/(1-v) using stress-strain relation of thin films. By comparing the biaxial elastic modulus with the plane-strain modulus E/(1-{{{{ { v}^{2 } }}) measured by nano-in-dentation we could further determine the elastic modulus and Poisson's ratio independently. This method was employed to measure the mechanical properties of DLC films deposited by {{{{ { {C }_{6 }H }_{6 } }} rf glow discharge. The was elastic modulus E increased from 94 to 169 GPa as the {{{{ { V}_{ b} / SQRT { P} }} increased from 127 to 221 V/{{{{ {mTorr }^{1/2 } }} Poisson's ratio was estimated to be abou 0.16∼0.22 in this {{{{ { V}_{ b} / SQRT { P} }} range. For the {{{{ { V}_{ b} / SQRT { P} }} less than 127V/{{{{ {mTorr }^{1/2 } }} where the plastic deformation can occur by the substrate etching process however the present method could not be applied.

  • PDF

평판재하시험을 이용한 지반반력계수와 변형률계수의 상관관계 평가 (Evaluation of Correlation between Subgrade Reaction Modulus and Strain Modulus Using Plate Loading Test)

  • 김대상;박성용;김수일
    • 한국지반공학회논문집
    • /
    • 제24권6호
    • /
    • pp.57-67
    • /
    • 2008
  • 철도노반의 다짐 후 품질을 관리하기 위하여 비반복 평판재하시험(nonrepetitive plate loading test)으로부터 얻어지는 지반반력계수(subgrade reaction modulus, $k_{30}$)와 반복평판재하시험(repetitive plate loading test)으로부터 획득하는 변형률계수(strain modulus, $E_v$)의 두 계수를 혼용하고 있다. 평판을 이용한 재하시험을 수행한다는 점에서 두 시험법은 동일하나, 설계정수 획득방법, 반복재하 횟수, 각 하중 단계에서의 시험 종료방법 등 시험방법에는 큰 차이가 있다. 본 논문에서는 두 시험의 차이를 비교 분석하고 두 계수에 대한 상관성을 평가하였다. 이를 위하여 경부고속철도 2단계 공사구간의 원지반 6개소와 쌓기지반 5개소에 대한 총 22회의 현장시험을 실시하였다. 현장 시험 시의 응력조건, 변형률 조건 및 포아송비 조건을 고려한 보정을 수행하여 두 계수의 상관성을 높였으며, 현장에서 사용이 가능하도록 지반종류에 따른 상관계수를 제시하였다.

Stiffness Modulus Comparison in Trackbed Foundation Soil

  • Kim, Daesung;Cho, Hojin;Park, Jaebeom;Lim, Yujin
    • International Journal of Railway
    • /
    • 제8권2호
    • /
    • pp.50-54
    • /
    • 2015
  • The primary function of the trackbed in a conventional railway track system is to decrease the stresses in the subgrade to be in an acceptable level. A properly designed trackbed layer performs this task adequately. Many design procedures have used assumed and/or are based on critical stiffness values of the layers obtained mostly in the field to calculate an appropriate thickness of the sublayers of the trackbed foundation. However, those stiffness values do not consider strain levels clearly and precisely in the layers. This study proposes a method of computation of stiffness that can handle with strain level in the layers of the trackbed foundation in order to provide properly selected design values of the stiffness of the layers. The shear modulus values are dependent on shear strain level so that the strain levels generated in the subgrade in the trackbed under wheel loading and below plate of Repeated Plate Bearing Test (RPBT) are investigated by finite element analysis program ABAQUS and PLAXIS programs. The strain levels generated in the subgrade from RPBT are compared to those values from RC (Resonant Column) test after some consideration of strain levels and stress consideration. For comparison of shear modulus G obtained from RC test and stiffness moduli $E_{v2}$ obtained from RPBT in the field, many numbers of mid-size RC tests in laboratory and RPBT in field were performed extensively. It was found in this study that there is a big difference in stiffness modulus when the converted $E_{v2}$ values were compared to those values of RC test. It is verified in this study that it is necessary to use precise and increased loading steps to construct nonlinear curves from RPBT in order to get correct $E_{v2}$ values in proper strain levels.

Experimental investigation of effects of sand contamination on strain modulus of railway ballast

  • Kian, Ali R. Tolou;Zakeri, Jabbar A.;Sadeghi, Javad
    • Geomechanics and Engineering
    • /
    • 제14권6호
    • /
    • pp.563-570
    • /
    • 2018
  • Ballast layer has an important role in vertical stiffness and stability of railway track. In most of the Middle East countries and some of the Asian ones, significant parts of railway lines pass through desert areas where the track (particularly ballast layer) is contaminated with sands. Despite considerable number of derailments reported in the sand contaminated tracks, there is a lack of sufficient studies on the influences of sand contamination on the ballast vertical stiffness as the main indicator of track stability. Addressing this limitation, the effects of sand contamination on the mechanical behavior of ballast were experimentally investigated. For this purpose, laboratory tests (plate load test) on ballast samples with different levels of sand contamination were carried out. The results obtained were analyzed leading to derive mathematical expressions for the strain modulus ($E_V$) as a function of the ballast level of contamination. The $E_V$ was used as an index for evaluation of the load-deformation characteristics and bearing capacity of track substructure. The critical limit of sand contamination, after which the $E_V$ of the ballast reduces drastically, was obtained. It was shown that the obtained research results improve the current track maintenance approach by providing key guides for the optimization of ballast maintenance planning (the timing of ballast cleaning or renewal).

Contact analysis of spherical ball and a deformable flat model with the effect of tangent modulus

  • Sathish Gandhi, V.C.;Ramesh, S.;Kumaravelan, R.;Thanmanaselvi, M.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.61-72
    • /
    • 2012
  • The paper is on contact analysis of a spherical ball with a deformable flat, considering the effect of tangent modulus on the contact parameters of a non-adhesive frictionless elastic-plastic contact. The contact analysis of this model has been carried out using analysis software Ansys and Abaqus. The contact parameters such as area of contact between two consecutive steps, volume of bulged material are evaluated from the formulated equations. The effect of the tangent modulus is considered for determining these parameters. The tangent modulus are accounted between 0.1E and 0.5E of materials E/Y value greater than 500 and less than 1750. Result shows that upto an optimal tangent modulus values the elastic core push up to the free surface in the flat. The simulation is also carried out in Abaqus and result provide evidence for the volume of bulged material in the contact region move up and flow into the free surface of the flat from the contact edge between the ball and flat. The strain energy of the whole model is varied between 20 to 40 percentage of the stipulated time for analysis.

응력 및 변형률 수준을 고려한 궤도 흙노반의 변형계수 특성 분석 (Investigation of Stiffness Characteristics of Subgrade Soils under Tracks Based on Stress and Strain Levels)

  • 임유진;김대성;조호진;사공명
    • 한국철도학회논문집
    • /
    • 제16권5호
    • /
    • pp.386-393
    • /
    • 2013
  • 본 연구에서는 궤도 하부 노반상에서 다짐도 확인 및 강화노반 두께 결정을 위하여 사용되는 변형계수 $E_{v2}$ 측정방법의 적절성과 측정값의 유효성을 검토하였다. 이를 위하여 반복평판재하시험(RPBT)을 실시하고 평판직하부에서 발생하는 압축변형률을 파악하였다. 동일 흙노반재료에 대한 공진주시험으로부터 획득된 전단탄성계수감소곡선과 $E_{v2}$를 비교하였다. 실 현장 RPBT의 발생변형률 수준과 변형계수의 크기가 합리적인지를 분석하기 위하여 응력조건과 대표 평균변형률계수($I_z$) 보정에 의해 반복평판재하시험 변형계수($E_{v2}$)를 재평가하였다. PLAXIS 프로그램을 이용하여 깊이에 따른 변형률 영향계수($I_z$)를 재산정하여 반복평판재하시험 결과($E_{v2}$) 해석에 미치는 변형률 영향계수의 영향을 분석하였으며 ABAQUS를 이용하여 3D궤도구조에서 노반이 받는 변형률수준을 확인하였다. 궤도하부구조가 경험하는 변형률수준에서의 변형계수 $E_{v2}$를 획득하기 위해서는 노반의 비선형성을 구현할 수 있도록 현 반복평판재하시험의 하중단계를 세분화할 필요성을 확인하였다.

LWDT와 Geogauge를 이용한 성토지반의 다짐관리 현장적용성 평가 (Applicability Estimation Compaction Method of Embankment using LWDT and Geogauge)

  • 임성윤;송호성;류희룡
    • 한국농공학회논문집
    • /
    • 제58권4호
    • /
    • pp.85-95
    • /
    • 2016
  • PBT (Plate Bearing Test) is a commonly used compaction estimation used to provide basal support for embankments. This study presents the results from experimental evaluations PBT, LWDT (Light Drop Weight Tester) test and Geogauge test with embankment materials which consist in sandy soil, crushed stone and rock. The results of this study indicate that the regression analyze results (r) from test results between Young's modulus and $k_{30}$, $E_v$ are 0.385 and 0.111~0.496, estimated very lack of correlation. The Geogauge is frequency vibration from machine to underground. Geogauge can not measure to accuracy test results when it is used on ground of the rock or crushed stone. The regression analyze results (r) from $E_v$ and Dynamic modulus are 0.502~0.847, different estimated by calculate method, as it were, when calculate $E_v$, least square method are appeared more accuracy than gradient of secant.